-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_cifar.py
778 lines (659 loc) · 38 KB
/
train_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
import argparse
import logging
import sys
import time
import math
from utils import *
from models import *
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import datasets, transforms
from ATRO_loss import MaxHingeLossWithRejection, WeightPenalty
import os
criterion_kl = nn.KLDivLoss(reduction='batchmean')
# def normalize(X):
# return X
def attack_pgd(model, X, y, epsilon, alpha, attack_iters, restarts, norm,
adaptive_evidence=False, adaptive_lambda=1., uniform_lambda=False, BNeval=False,
twobranch=False, twosign=False):
if BNeval:
model.eval()
max_loss = torch.zeros(y.shape[0]).cuda()
max_delta = torch.zeros_like(X).cuda()
for _ in range(restarts):
delta = torch.zeros_like(X).cuda()
if norm == "l_inf":
delta.uniform_(-epsilon, epsilon)
elif norm == "l_2":
delta.normal_()
d_flat = delta.view(delta.size(0),-1)
n = d_flat.norm(p=2,dim=1).view(delta.size(0),1,1,1)
r = torch.zeros_like(n).uniform_(0, 1)
delta *= r/n*epsilon
else:
raise ValueError
delta = clamp(delta, lower_limit-X, upper_limit-X)
delta.requires_grad = True
# uniform sampling for adaptive lambda
if uniform_lambda:
if twosign:
a_lambda = torch.zeros(y.shape[0]).uniform_(- adaptive_lambda,adaptive_lambda).cuda()
else:
a_lambda = torch.zeros(y.shape[0]).uniform_(0.,adaptive_lambda).cuda()
else:
a_lambda = adaptive_lambda
for _ in range(attack_iters):
if twobranch:
output, output_evi = model(normalize(X + delta))
evi = output_evi.logsumexp(dim=1)
else:
output = model(normalize(X + delta))
evi = output.logsumexp(dim=1)
loss = F.cross_entropy(output, y)
# if apply adaptive attacks for the evidence detection
if adaptive_evidence:
loss += (a_lambda * evi).mean()
grad = torch.autograd.grad(loss, delta)[0]
if norm == "l_inf":
d = torch.clamp(delta + alpha * torch.sign(grad), min=-epsilon, max=epsilon)
elif norm == "l_2":
g_norm = torch.norm(grad.view(grad.shape[0],-1),dim=1).view(-1,1,1,1)
scaled_g = grad/(g_norm + 1e-10)
d = (delta + scaled_g*alpha).view(delta.size(0),-1).renorm(p=2,dim=0,maxnorm=epsilon).view_as(delta)
d = clamp(d, lower_limit - X, upper_limit - X)
delta.data = d
if twobranch:
all_loss = F.cross_entropy(model(normalize(X+delta))[0], y, reduction='none')
else:
all_loss = F.cross_entropy(model(normalize(X+delta)), y, reduction='none')
max_delta[all_loss >= max_loss] = delta.detach()[all_loss >= max_loss]
max_loss = torch.max(max_loss, all_loss)
if BNeval:
model.train()
return max_delta, a_lambda
def attack_trades(model, X, y, epsilon, alpha, attack_iters, restarts, norm, BNeval=True, twobranch=False):
model.eval()
clean_output = model(normalize(X))[0] if twobranch else model(normalize(X))
clean_output = F.softmax(clean_output.detach(), dim=1)
#delta = torch.zeros_like(X).uniform_(-epsilon, epsilon).cuda()
delta = 0.001 * torch.randn(X.shape).cuda().detach()
delta = clamp(delta, lower_limit-X, upper_limit-X)
delta.requires_grad = True
for _ in range(attack_iters):
output = model(normalize(X + delta))[0] if twobranch else model(normalize(X + delta))
loss = criterion_kl(F.log_softmax(output, dim=1), clean_output)
grad = torch.autograd.grad(loss, delta)[0]
if norm == "l_inf":
d = torch.clamp(delta + alpha * torch.sign(grad), min=-epsilon, max=epsilon)
# elif norm == "l_2":
# g_norm = torch.norm(grad.view(grad.shape[0],-1),dim=1).view(-1,1,1,1)
# scaled_g = grad/(g_norm + 1e-10)
# d = (delta + scaled_g*alpha).view(delta.size(0),-1).renorm(p=2,dim=0,maxnorm=epsilon).view_as(delta)
delta.data = clamp(d, lower_limit - X, upper_limit - X)
model.train()
return delta.detach()
def attack_ATRO(MHRLoss, num_cla, model, X, y, epsilon, alpha, attack_iters, restarts, norm, BNeval=True, twobranch=True):
model.eval()
delta = torch.zeros_like(X).uniform_(-epsilon, epsilon).cuda()
delta = clamp(delta, lower_limit-X, upper_limit-X)
delta.requires_grad = True
for _ in range(attack_iters):
output, output_aux = model(normalize(X + delta))
loss,_ = MHRLoss(F.softmax(output, dim=1), output_aux.tanh(), y, num_cla)
#loss,_ = MHRLoss(output, output_aux.tanh(), y, num_cla)
grad = torch.autograd.grad(loss, delta)[0]
if norm == "l_inf":
d = torch.clamp(delta + alpha * torch.sign(grad), min=-epsilon, max=epsilon)
delta.data = clamp(d, lower_limit - X, upper_limit - X)
model.train()
return delta.detach()
def attack_CARL(model, X, y, epsilon, alpha, attack_iters, restarts, norm, BNeval=False, twobranch=True):
if BNeval:
model.eval()
delta = torch.zeros_like(X).uniform_(-epsilon, epsilon).cuda()
delta = clamp(delta, lower_limit-X, upper_limit-X)
delta.requires_grad = True
for _ in range(attack_iters):
output, output_aux = model(normalize(X + delta))
output_all = torch.cat((output, output_aux), dim=1) # bs x 11 or bs x 101
softmax_output = F.softmax(output_all, dim=1)
so_y = softmax_output[torch.tensor(range(X.size(0))), y]
so_a = softmax_output[torch.tensor(range(X.size(0))), -1]
loss = - torch.log(so_y + so_a)
grad = torch.autograd.grad(loss.mean(), delta)[0]
if norm == "l_inf":
d = torch.clamp(delta + alpha * torch.sign(grad), min=-epsilon, max=epsilon)
delta.data = clamp(d, lower_limit - X, upper_limit - X)
if BNeval:
model.train()
return delta.detach()
def attack_ccat(model, X, y, epsilon, alpha, attack_iters, restarts, norm, BNeval=False, twobranch=False,
beta=0.9, lr_decay=1.5):
if BNeval:
model.eval()
max_loss = torch.zeros(y.shape[0]).cuda()
max_delta = torch.zeros_like(X).cuda()
ber = torch.distributions.bernoulli.Bernoulli(0.5)
for _ in range(restarts):
delta = torch.zeros_like(X).cuda()
ber_samples = ber.sample(torch.Size([y.shape[0]]))
if norm == "l_inf":
#delta.uniform_(-epsilon, epsilon)
d = delta[ber_samples > 0]
d.normal_()
u = torch.zeros(d.size(0)).uniform_(0, 1).cuda()
linf_norm = u / torch.max(d.abs().view(d.size(0),-1), dim=1)[0]
d = epsilon * d * linf_norm.view(d.size(0), 1, 1, 1)
delta[ber_samples > 0] = d
elif norm == "l_2":
delta.normal_()
d_flat = delta.view(delta.size(0),-1)
n = d_flat.norm(p=2,dim=1).view(delta.size(0),1,1,1)
r = torch.zeros_like(n).uniform_(0, 1)
delta *= r/n*epsilon
else:
raise ValueError
delta = clamp(delta, lower_limit-X, upper_limit-X)
delta.requires_grad = True
alpha_batch = alpha * torch.ones(y.size(0), 1, 1, 1).half().cuda()
momentum_grad = 0
best_loss = torch.zeros(y.size(0)).cuda()
for ai in range(attack_iters):
output = model(normalize(X + delta))[0] if twobranch else model(normalize(X + delta))
# choose the max labels except for the true ones
softmax_output = F.softmax(output, dim=1)
softmax_output[torch.arange(X.size(0)), y] = -1
y_max = torch.max(softmax_output, dim=1)[1].detach()
loss = - F.cross_entropy(output, y_max)
grad = torch.autograd.grad(loss, delta)[0]
if norm == "l_inf":
# momentum_grad = torch.sign(grad) if ai == 0 else beta * momentum_grad + (1 - beta) * torch.sign(grad)
momentum_grad = beta * momentum_grad + (1 - beta) * torch.sign(grad)
d = torch.clamp(delta + alpha_batch * momentum_grad, min=-epsilon, max=epsilon)
elif norm == "l_2":
g_norm = torch.norm(grad.view(grad.shape[0],-1),dim=1).view(-1,1,1,1)
scaled_g = grad/(g_norm + 1e-10)
d = (delta + scaled_g*alpha_batch).view(delta.size(0),-1).renorm(p=2,dim=0,maxnorm=epsilon).view_as(delta)
#backtrack
d = clamp(d, lower_limit - X, upper_limit - X)
output = model(normalize(X + d))[0] if twobranch else model(normalize(X + d))
loss_d = F.cross_entropy(output.detach(), y, reduction='none')
alpha_batch[loss_d <= best_loss] = alpha_batch[loss_d <= best_loss] / lr_decay
delta.data[loss_d >= best_loss] = d[loss_d >= best_loss]
best_loss[loss_d >= best_loss] = loss_d[loss_d >= best_loss]
if twobranch:
all_loss = F.cross_entropy(model(normalize(X+delta))[0], y, reduction='none')
else:
all_loss = F.cross_entropy(model(normalize(X+delta)), y, reduction='none')
max_delta[all_loss >= max_loss] = delta.detach()[all_loss >= max_loss]
max_loss = torch.max(max_loss, all_loss)
if BNeval:
model.train()
return max_delta
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='PreActResNet18')
parser.add_argument('--batch-size', default=128, type=int)
parser.add_argument('--dataset', default='CIFAR-10', type=str)
parser.add_argument('--data-dir', default='../cifar-data', type=str)
parser.add_argument('--epochs', default=110, type=int)
parser.add_argument('--lr-max', default=0.1, type=float)
parser.add_argument('--lr-schedule', default='piecewise', type=str)
parser.add_argument('--attack', default='pgd', type=str, choices=['pgd', 'free', 'none'])
parser.add_argument('--epsilon', default=8, type=int)
parser.add_argument('--attack-iters', default=10, type=int)
parser.add_argument('--restarts', default=1, type=int)
parser.add_argument('--pgd-alpha', default=2, type=float)
parser.add_argument('--fgsm-alpha', default=1.25, type=float)
parser.add_argument('--norm', default='l_inf', type=str, choices=['l_inf', 'l_2'])
parser.add_argument('--fname', default='cifar_model', type=str)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--weight_decay', default=5e-4, type=float)#weight decay
parser.add_argument('--optimizer', default='SGD', type=str)
parser.add_argument('--target', action='store_true') # whether use target-mode attack
parser.add_argument('--ATframework', default='PGDAT', type=str, choices=['PGDAT', 'TRADES', 'CCAT'])
parser.add_argument('--TRADESlambda', default=1., type=float)
parser.add_argument('--CCATiter', default=20, type=int)
parser.add_argument('--CCATrho', default=1, type=int)
parser.add_argument('--CCATstep', default=1., type=float)
parser.add_argument('--CCATratio', default=1., type=float)
parser.add_argument('--CCATscale', default=1., type=float)
### adaptive attack
parser.add_argument('--adaptiveattack', action='store_true') # whether use adaptive term in the attacks
parser.add_argument('--adaptiveattacklambda', default=1., type=float)
parser.add_argument('--uniform_lambda', action='store_true') # whether use uniform distribution for lambda in adaptive attack
parser.add_argument('--BNeval', action='store_true') # whether use eval mode for BN when crafting adversarial examples
parser.add_argument('--twosign', action='store_true')
### adaptive training
parser.add_argument('--adaptivetrain', action='store_true') # whether use adaptive term in train
parser.add_argument('--adaptivetrainlambda', default=1., type=float)
parser.add_argument('--selfreweightCalibrate', action='store_true') # Calibrate
parser.add_argument('--temp', default=1., type=float)
parser.add_argument('--tempC', default=1., type=float)
parser.add_argument('--tempC_trueonly', default=1., type=float) # stop gradient for the confidence term
parser.add_argument('--SGconfidenceW', action='store_true') # stop gradient for the confidence term
parser.add_argument('--ConfidenceOnly', action='store_true')
parser.add_argument('--AuxiliaryOnly', action='store_true')
# two branch for our selfreweightCalibrate (rectified rejection)
parser.add_argument('--twobranch', action='store_true')
parser.add_argument('--out_dim', default=10, type=int)
parser.add_argument('--useBN', action='store_true')
parser.add_argument('--along', action='store_true')
### EBD baseline
parser.add_argument('--selfreweightNIPS20', action='store_true') # Energy-based Out-of-distribution Detection
parser.add_argument('--m_in', default=6, type=float)
parser.add_argument('--m_out', default=3, type=float)
### ATRO baseline
parser.add_argument('--selfreweightATRO', action='store_true') # ATRO https://github.com/MasaKat0/ATRO
parser.add_argument('--ATRO_cost', default=0.3, type=float)
parser.add_argument('--ATRO_coefficient', default=0.3, type=float)
### CARL baseline
parser.add_argument('--selfreweightCARL', action='store_true') # CARL https://github.com/cassidylaidlaw/playing-it-safe
parser.add_argument('--CARL_lambda', default=0.5, type=float)
parser.add_argument('--CARL_eta', default=0.02, type=float)
return parser.parse_args()
def main():
args = get_args()
epsilon = (args.epsilon / 255.)
pgd_alpha = (args.pgd_alpha / 255.)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.benchmark=True
if args.fname == 'auto':
names = get_auto_fname(args)
args.fname = 'trained_models/' + args.dataset + '/' + names
else:
args.fname = 'trained_models/' + args.dataset + '/' + args.fname
if not os.path.exists(args.fname):
os.makedirs(args.fname)
logger = logging.getLogger(__name__)
logging.basicConfig(
format='[%(asctime)s] - %(message)s',
datefmt='%Y/%m/%d %H:%M:%S',
level=logging.DEBUG,
handlers=[
logging.FileHandler(os.path.join(args.fname, 'output.log')),
logging.StreamHandler()
])
logger.info(args)
# Prepare dataset
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
transform_test = transforms.Compose([transforms.ToTensor()])
if args.dataset == 'CIFAR-10':
trainset = torchvision.datasets.CIFAR10(root='../cifar-data', train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root='../cifar-data', train=False, download=True, transform=transform_test)
num_cla = 10
elif args.dataset == 'CIFAR-100':
trainset = torchvision.datasets.CIFAR100(root='../cifar-data', train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR100(root='../cifar-data', train=False, download=True, transform=transform_test)
num_cla = 100
train_batches = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=2, pin_memory=True)
test_batches = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=2, pin_memory=True)
if args.selfreweightCalibrate or args.selfreweightATRO or args.selfreweightCARL:
along = True
args.out_dim = 1
# Creat model
if args.model_name == 'PreActResNet18':
model = PreActResNet18(num_classes=num_cla)
elif args.model_name == 'PreActResNet18_twobranch_DenseV1':
model = PreActResNet18_twobranch_DenseV1(num_classes=num_cla, out_dim=args.out_dim, use_BN=args.useBN, along=along)
elif args.model_name == 'PreActResNet18_twobranch_DenseV1Multi':
model = PreActResNet18_twobranch_DenseV1Multi(num_classes=num_cla, out_dim=args.out_dim, use_BN=args.useBN, along=along)
elif args.model_name == 'PreActResNet18_twobranch_DenseV2':
model = PreActResNet18_twobranch_DenseV2(num_classes=num_cla, out_dim=args.out_dim, use_BN=args.useBN, along=along)
elif args.model_name == 'WideResNet':
model = WideResNet(34, num_cla, widen_factor=10, dropRate=0.0)
elif args.model_name == 'WideResNet_twobranch_DenseV1':
model = WideResNet_twobranch_DenseV1(34, num_cla, widen_factor=10, dropRate=0.0, use_BN=args.useBN, along=along, out_dim=args.out_dim)
elif args.model_name == 'WideResNet_20':
model = WideResNet(34, num_cla, widen_factor=20, dropRate=0.0)
else:
raise ValueError("Unknown model")
model = nn.DataParallel(model).cuda()
model.train()
params = model.parameters()
if args.optimizer == 'SGD':
opt = torch.optim.SGD(params, lr=args.lr_max, momentum=0.9, weight_decay=args.weight_decay)
elif args.optimizer == 'Adam':
opt = torch.optim.Adam(params, lr=args.lr_max, betas=(0.9, 0.999), eps=1e-08, weight_decay=args.weight_decay, amsgrad=False)
if args.attack == 'free':
epochs = int(math.ceil(args.epochs / args.attack_iters))
else:
epochs = args.epochs
def lr_schedule(t):
if t < 100:
return args.lr_max
elif t < 105:
return args.lr_max / 10.
else:
return args.lr_max / 100.
best_test_robust_acc, best_val_robust_acc, start_epoch = 0, 0, 0
criterion = nn.CrossEntropyLoss()
criterion_none = nn.CrossEntropyLoss(reduction='none')
BCEcriterion = nn.BCELoss(reduction='none')
MSEcriterion = nn.MSELoss()
MHRLoss = MaxHingeLossWithRejection(args.ATRO_cost)
# logger.info('Epoch \t Acc \t Robust Acc \t Evi \t Robust Evi')
logger.info('Epoch \t Acc \t Robust Acc')
for epoch in range(start_epoch, epochs):
model.train()
start_time = time.time()
for i, (data, target) in enumerate(train_batches):
X, y = data.cuda(), target.cuda()
epoch_now = epoch + (i + 1) / len(train_batches)
lr = lr_schedule(epoch_now)
opt.param_groups[0].update(lr=lr)
if args.selfreweightATRO:
delta = attack_ATRO(MHRLoss, num_cla, model, X, y, epsilon, pgd_alpha, args.attack_iters, args.restarts, args.norm,
BNeval=True, twobranch=True)
elif args.selfreweightCARL:
delta = attack_CARL(model, X, y, epsilon, pgd_alpha, args.attack_iters, args.restarts, args.norm,
BNeval=args.BNeval, twobranch=True)
elif args.ATframework == 'TRADES':
delta = attack_trades(model, X, y, epsilon, pgd_alpha, args.attack_iters, args.restarts, args.norm,
BNeval=True, twobranch=args.twobranch)
delta = delta.detach()
elif args.ATframework == 'PGDAT':
delta, adaptive_l = attack_pgd(model, X, y, epsilon, pgd_alpha, args.attack_iters, args.restarts, args.norm,
adaptive_evidence=args.adaptiveattack, adaptive_lambda=args.adaptiveattacklambda,
uniform_lambda=args.uniform_lambda, BNeval=args.BNeval, twobranch=args.twobranch, twosign=args.twosign)
delta = delta.detach()
elif args.ATframework == 'CCAT':
output = model(normalize(X))[0] if args.twobranch else model(normalize(X))
delta = attack_ccat(model, X, y, epsilon, args.CCATstep / 255., args.CCATiter, args.restarts, args.norm,
BNeval=args.BNeval, twobranch=args.twobranch)
delta = delta.detach()
# Standard training
elif args.attack == 'none':
delta = torch.zeros_like(X)
# whether use two branches
if args.twobranch:
robust_output, robust_output_aux = model(normalize(torch.clamp(X + delta, min=lower_limit, max=upper_limit)))
else:
robust_output = model(normalize(torch.clamp(X + delta, min=lower_limit, max=upper_limit)))
# choose between PGDAT, CCAT and TRADES
if args.ATframework == 'PGDAT':
robust_loss = criterion(robust_output, y)
elif args.ATframework == 'TRADES':
output = model(normalize(X))[0] if args.twobranch else model(normalize(X))
KL_term = criterion_kl(F.log_softmax(robust_output, dim=1), F.softmax(output, dim=1))
robust_loss = criterion(output, y) + args.TRADESlambda * KL_term
elif args.ATframework == 'CCAT':
sl = 1 - torch.max(delta.detach().view(y.size(0), -1).abs(), dim=1, keepdim=True)[0] / (args.CCATscale * epsilon)
sl = torch.pow(sl, args.CCATrho) # bs x num_cla
#print(sl)
smoothed_label = sl * F.one_hot(y, num_classes=num_cla) + (1 - sl) / num_cla
robust_loss = criterion(output, y) + args.CCATratio * criterion_kl(F.log_softmax(robust_output, dim=1), smoothed_label.float())
if args.adaptivetrain:
if args.selfreweightCalibrate:
robust_output_s = torch.softmax(robust_output * args.tempC, dim=1)
robust_con_pre, robust_con_label = robust_output_s.max(1) # predicted label and confidence
robust_output_s_ = torch.softmax(robust_output * args.tempC_trueonly, dim=1)
robust_con_y = robust_output_s_[torch.tensor(range(X.size(0))), y].detach() # predicted prob on the true label y
if args.SGconfidenceW:
correct_index = torch.where(robust_output.max(1)[1] == y)[0]
robust_con_pre[correct_index] = robust_con_pre[correct_index].detach()
robust_output_aux = robust_output_aux.sigmoid().squeeze() # bs, Calibration function A \in [0,1]
robust_detector = robust_con_pre * robust_output_aux
### ConfidenceOnly and AuxiliaryOnly are used for ablation studies
if args.ConfidenceOnly:
robust_detector = robust_con_pre
if args.AuxiliaryOnly:
robust_detector = robust_output_aux
aux_loss = BCEcriterion(robust_detector, robust_con_y)
robust_loss += args.adaptivetrainlambda * aux_loss.mean(dim=0)
elif args.selfreweightNIPS20:
wrong_index = torch.where(robust_output.max(1)[1] != y)[0]
correct_index = torch.where(robust_output.max(1)[1] == y)[0]
logp_robust_all = robust_output.logsumexp(dim=1)
if wrong_index.size(0) > 0 and correct_index.size(0) > 0:
logp_robust_wrong = logp_robust_all[wrong_index]
logp_robust_correct = logp_robust_all[correct_index]
L_en = torch.pow(F.relu(logp_robust_wrong - args.m_out), 2).mean() \
+ torch.pow(F.relu(args.m_in - logp_robust_correct), 2).mean()
robust_loss += args.adaptivetrainlambda * L_en
elif args.selfreweightATRO:
robust_output_aux = robust_output_aux.tanh() # -1 to 1
robust_loss += args.ATRO_coefficient * MHRLoss(F.softmax(robust_output, dim=1), robust_output_aux, y, num_cla)[0]
#robust_loss += args.ATRO_coefficient * MHRLoss(robust_output, robust_output_aux, y, num_cla)[0]
#robust_loss += 0.5 * WeightPenalty()(model)
elif args.selfreweightCARL:
ro_output_all = torch.cat((robust_output, robust_output_aux), dim=1) # bs x 11 or bs x 101
ro_softmax_output = F.softmax(ro_output_all, dim=1)
ro_so_y = ro_softmax_output[torch.tensor(range(X.size(0))), y]
ro_so_a = ro_softmax_output[torch.tensor(range(X.size(0))), -1]
l1_loss = - torch.log(ro_so_y + ro_so_a)
X.requires_grad_(True)
output = model(normalize(X))[0] if args.twobranch else model(normalize(X))
grad_CE = torch.autograd.grad(CW_loss(output, y, SUM=True), X, create_graph=True)[0]
grad_norm = torch.norm(grad_CE.view(X.size(0), -1), p=1, dim=1)
# robust_loss = criterion(output, y) + args.CARL_lambda * l1_loss.mean() + args.CARL_eta * grad_norm.mean()
robust_loss += args.CARL_lambda * l1_loss.mean() + args.CARL_eta * grad_norm.mean()
opt.zero_grad()
robust_loss.backward()
opt.step()
model.eval()
test_acc = 0
test_robust_acc = 0
test_evi_correct = 0
test_robust_evi_correct = 0
test_evi_wrong = 0
test_robust_evi_wrong = 0
test_n = 0
for i, (data, target) in enumerate(test_batches):
X, y = data.cuda(), target.cuda()
# Random initialization
delta, _ = attack_pgd(model, X, y, epsilon, pgd_alpha, args.attack_iters, args.restarts, args.norm, twobranch=args.twobranch)
delta = delta.detach()
if args.twobranch:
output, output_aux = model(normalize(X))
robust_output, robust_output_aux = model(normalize(torch.clamp(X + delta, min=lower_limit, max=upper_limit)))
con_pre, _ = torch.softmax(output * args.tempC, dim=1).max(1) # predicted label and confidence
robust_con_pre, _ = torch.softmax(robust_output * args.tempC, dim=1).max(1) # predicted label and confidence
if args.selfreweightCalibrate:
output_aux = output_aux.sigmoid().squeeze()
robust_output_aux = robust_output_aux.sigmoid().squeeze() # bs x 1, Calibration function A \in [0,1]
test_evi_all = con_pre * output_aux
test_robust_evi_all = robust_con_pre * robust_output_aux
if args.ConfidenceOnly:
test_evi_all = con_pre
test_robust_evi_all = robust_con_pre
if args.AuxiliaryOnly:
test_evi_all = output_aux
test_robust_evi_all = robust_output_aux
elif args.selfreweightATRO:
test_evi_all = output_aux.tanh().squeeze()
test_robust_evi_all = robust_output_aux.tanh().squeeze() # bs x 1, Calibration function A \in [0,1]
elif args.selfreweightCARL:
output_all = torch.cat((output, output_aux), dim=1) # bs x 11 or bs x 101
ro_output_all = torch.cat((robust_output, robust_output_aux), dim=1) # bs x 11 or bs x 101
softmax_output = F.softmax(output_all, dim=1)
ro_softmax_output = F.softmax(ro_output_all, dim=1)
test_evi_all = softmax_output[torch.tensor(range(X.size(0))), -1]
test_robust_evi_all = ro_softmax_output[torch.tensor(range(X.size(0))), -1]
else:
output = model(normalize(X))
robust_output = model(normalize(torch.clamp(X + delta, min=lower_limit, max=upper_limit)))
test_evi_all = output.logsumexp(dim=1)
test_robust_evi_all = robust_output.logsumexp(dim=1)
# output labels
labels = torch.where(output.max(1)[1] == y)[0]
robust_labels = torch.where(robust_output.max(1)[1] == y)[0]
# accuracy
test_acc += labels.size(0)
test_robust_acc += robust_labels.size(0)
# standard evidence
test_evi_correct += test_evi_all[labels].sum().item()
test_evi_wrong += test_evi_all.sum().item() - test_evi_all[labels].sum().item()
# robust evidence
test_robust_evi_correct += test_robust_evi_all[robust_labels].sum().item()
test_robust_evi_wrong += test_robust_evi_all.sum().item() - test_robust_evi_all[robust_labels].sum().item()
test_n += y.size(0)
test_time = time.time()
# logger.info('%d \t %.4f \t %.4f \t (%.4f / %.4f) \t (%.4f / %.4f)', epoch, test_acc/test_n, test_robust_acc/test_n,
# test_evi_correct/test_acc, test_evi_wrong/(test_n-test_acc),
# test_robust_evi_correct/test_robust_acc, test_robust_evi_wrong/(test_n-test_robust_acc))
logger.info('%d \t %.4f \t %.4f', epoch, test_acc/test_n, test_robust_acc/test_n)
# save best
if test_robust_acc/test_n > best_test_robust_acc:
torch.save({
'state_dict':model.state_dict(),
'test_robust_acc':test_robust_acc/test_n,
'test_acc':test_acc/test_n,
}, os.path.join(args.fname, f'model_best.pth'))
best_test_robust_acc = test_robust_acc/test_n
# calculate AUC
if True:
model_dict = torch.load(os.path.join(args.fname, f'model_best.pth'))
logger.info(f'Resuming at best epoch')
if 'state_dict' in model_dict.keys():
model.load_state_dict(model_dict['state_dict'])
else:
model.load_state_dict(model_dict)
model.eval()
test_acc = 0
test_robust_acc = 0
test_n = 0
test_classes_correct = []
test_classes_wrong = []
test_classes_robust_correct = []
test_classes_robust_wrong = []
# record con
test_con_correct = []
test_robust_con_correct = []
test_con_wrong = []
test_robust_con_wrong = []
# record evi
test_evi_correct = []
test_robust_evi_correct = []
test_evi_wrong = []
test_robust_evi_wrong = []
for i, (data, target) in enumerate(test_batches):
X, y = data.cuda(), target.cuda()
if args.target:
y_target = sample_targetlabel(y, num_classes=num_cla)
delta,_ = attack_pgd(model, X, y_target, epsilon, pgd_alpha, args.attack_iters, args.restarts, args.norm, target=True, twobranch=args.twobranch)
else:
delta,_ = attack_pgd(model, X, y, epsilon, pgd_alpha, args.attack_iters, args.restarts, args.norm, twobranch=args.twobranch)
delta = delta.detach()
if args.twobranch:
output, output_aux = model(normalize(X))
robust_output, robust_output_aux = model(normalize(torch.clamp(X + delta, min=lower_limit, max=upper_limit)))
con_pre, _ = torch.softmax(output * args.tempC, dim=1).max(1) # predicted label and confidence
robust_con_pre, _ = torch.softmax(robust_output * args.tempC, dim=1).max(1) # predicted label and confidence
if args.selfreweightCalibrate:
output_aux = output_aux.sigmoid().squeeze()
robust_output_aux = robust_output_aux.sigmoid().squeeze() # bs x 1, Calibration function A \in [0,1]
test_evi_all = con_pre * output_aux
test_robust_evi_all = robust_con_pre * robust_output_aux
if args.ConfidenceOnly:
test_evi_all = con_pre
test_robust_evi_all = robust_con_pre
if args.AuxiliaryOnly:
test_evi_all = output_aux
test_robust_evi_all = robust_output_aux
elif args.selfreweightATRO:
test_evi_all = output_aux.tanh().squeeze()
test_robust_evi_all = robust_output_aux.tanh().squeeze() # bs x 1, Calibration function A \in [0,1]
elif args.selfreweightCARL:
output_all = torch.cat((output, output_aux), dim=1) # bs x 11 or bs x 101
ro_output_all = torch.cat((robust_output, robust_output_aux), dim=1) # bs x 11 or bs x 101
softmax_output = F.softmax(output_all, dim=1)
ro_softmax_output = F.softmax(ro_output_all, dim=1)
test_evi_all = softmax_output[torch.tensor(range(X.size(0))), -1]
test_robust_evi_all = ro_softmax_output[torch.tensor(range(X.size(0))), -1]
else:
output = model(normalize(X))
robust_output = model(normalize(torch.clamp(X + delta[:X.size(0)], min=lower_limit, max=upper_limit)))
test_evi_all = output.logsumexp(dim=1)
test_robust_evi_all = robust_output.logsumexp(dim=1)
output_s = F.softmax(output, dim=1)
out_con, out_pre = output_s.max(1)
ro_output_s = F.softmax(robust_output, dim=1)
ro_out_con, ro_out_pre = ro_output_s.max(1)
# output labels
labels = torch.where(out_pre == y)[0]
robust_labels = torch.where(ro_out_pre == y)[0]
labels_n = torch.where(out_pre != y)[0]
robust_labels_n = torch.where(ro_out_pre != y)[0]
# ground labels
test_classes_correct += y[labels].tolist()
test_classes_wrong += y[labels_n].tolist()
test_classes_robust_correct += y[robust_labels].tolist()
test_classes_robust_wrong += y[robust_labels_n].tolist()
# accuracy
test_acc += labels.size(0)
test_robust_acc += robust_labels.size(0)
# confidence
test_con_correct += out_con[labels].tolist()
test_con_wrong += out_con[labels_n].tolist()
test_robust_con_correct += ro_out_con[robust_labels].tolist()
test_robust_con_wrong += ro_out_con[robust_labels_n].tolist()
# evidence
test_evi_correct += test_evi_all[labels].tolist()
test_evi_wrong += test_evi_all[labels_n].tolist()
test_robust_evi_correct += test_robust_evi_all[robust_labels].tolist()
test_robust_evi_wrong += test_robust_evi_all[robust_labels_n].tolist()
test_n += y.size(0)
print('Finish ', i)
# confidence
test_con_correct = torch.tensor(test_con_correct)
test_robust_con_correct = torch.tensor(test_robust_con_correct)
test_con_wrong = torch.tensor(test_con_wrong)
test_robust_con_wrong = torch.tensor(test_robust_con_wrong)
# evidence
test_evi_correct = torch.tensor(test_evi_correct)
test_robust_evi_correct = torch.tensor(test_robust_evi_correct)
test_evi_wrong = torch.tensor(test_evi_wrong)
test_robust_evi_wrong = torch.tensor(test_robust_evi_wrong)
print('### Basic statistics ###')
logger.info('Clean | acc: %.4f | con cor: %.3f (%.3f) | con wro: %.3f (%.3f) | evi cor: %.3f (%.3f) | evi wro: %.3f (%.3f)',
test_acc/test_n,
test_con_correct.mean().item(), test_con_correct.std().item(),
test_con_wrong.mean().item(), test_con_wrong.std().item(),
test_evi_correct.mean().item(), test_evi_correct.std().item(),
test_evi_wrong.mean().item(), test_evi_wrong.std().item())
logger.info('Robust | acc: %.4f | con cor: %.3f (%.3f) | con wro: %.3f (%.3f) | evi cor: %.3f (%.3f) | evi wro: %.3f (%.3f)',
test_robust_acc/test_n,
test_robust_con_correct.mean().item(), test_robust_con_correct.std().item(),
test_robust_con_wrong.mean().item(), test_robust_con_wrong.std().item(),
test_robust_evi_correct.mean().item(), test_robust_evi_correct.std().item(),
test_robust_evi_wrong.mean().item(), test_robust_evi_wrong.std().item())
print('')
print('### ROC-AUC scores (confidence) ###')
# clean_clean = calculate_auc_scores(test_con_correct, test_con_wrong)
# robust_robust = calculate_auc_scores(test_robust_con_correct, test_robust_con_wrong)
# logger.info('clean_clean: %.3f | robust_robust: %.3f',
# clean_clean, robust_robust)
clean_clean = calculate_auc_scores(test_con_correct, test_con_wrong)
_, acc95 = calculate_FPR_TPR(test_con_correct, test_con_wrong, tpr_ref=0.95)
_, acc99 = calculate_FPR_TPR(test_con_correct, test_con_wrong, tpr_ref=0.99)
robust_robust = calculate_auc_scores(test_robust_con_correct, test_robust_con_wrong)
_, ro_acc95 = calculate_FPR_TPR(test_robust_con_correct, test_robust_con_wrong, tpr_ref=0.95)
_, ro_acc99 = calculate_FPR_TPR(test_robust_con_correct, test_robust_con_wrong, tpr_ref=0.99)
logger.info('clean_clean: %.3f | robust_robust: %.3f',
clean_clean, robust_robust)
logger.info('TPR 95 clean acc: %.4f; 99 clean acc: %.4f | TPR 95 robust acc: %.4f; 99 robust acc: %.4f',
acc95 - test_acc, acc99 - test_acc, ro_acc95 - test_robust_acc, ro_acc99 - test_robust_acc)
print('')
print('### ROC-AUC scores (evidence) ###')
# clean_clean = calculate_auc_scores(test_evi_correct, test_evi_wrong)
# robust_robust = calculate_auc_scores(test_robust_evi_correct, test_robust_evi_wrong)
# logger.info('clean_clean: %.3f | robust_robust: %.3f',
# clean_clean, robust_robust)
clean_clean = calculate_auc_scores(test_evi_correct, test_evi_wrong)
_, acc95 = calculate_FPR_TPR(test_evi_correct, test_evi_wrong, tpr_ref=0.95)
_, acc99 = calculate_FPR_TPR(test_evi_correct, test_evi_wrong, tpr_ref=0.99)
robust_robust = calculate_auc_scores(test_robust_evi_correct, test_robust_evi_wrong)
_, ro_acc95 = calculate_FPR_TPR(test_robust_evi_correct, test_robust_evi_wrong, tpr_ref=0.95)
_, ro_acc99 = calculate_FPR_TPR(test_robust_evi_correct, test_robust_evi_wrong, tpr_ref=0.99)
logger.info('clean_clean: %.3f | robust_robust: %.3f',
clean_clean, robust_robust)
logger.info('TPR 95 clean acc: %.4f; 99 clean acc: %.4f | TPR 95 robust acc: %.4f; 99 robust acc: %.4f',
acc95 - test_acc, acc99 - test_acc, ro_acc95 - test_robust_acc, ro_acc99 - test_robust_acc)
if __name__ == "__main__":
main()