Skip to content

Latest commit

 

History

History
68 lines (52 loc) · 2.28 KB

README.md

File metadata and controls

68 lines (52 loc) · 2.28 KB

xdistances

Python wrapper on strsim a Rust implementations of string similarity metrics:

The normalized versions return values between 0.0 and 1.0, where 1.0 means an exact match.

Installation

pip install xdistances

Usage

Go to https://xdistances.readthedocs.io for the full documentation.

Examples

>>> import xdistances
>>> xdistances.hamming("hamming", "hammers")
3
>>> xdistances.hamming("hamming", "hammer")
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: Lenght mismatch
>>> xdistances.levenshtein("kitten", "sitting")
3
>>> xdistances.normalized_levenshtein("kitten", "sitting")
0.5714285714285714
>>> xdistances.osa_distance("ac", "cba")
3
>>> xdistances.damerau_levenshtein("ac", "cba")
2
>>> xdistances.normalized_damerau_levenshtein("levenshtein", "löwenbräu")
0.2727272727272727
>>> xdistances.jaro("Friedrich Nietzsche", "Jean-Paul Sartre")
0.39188596491228067
>>> xdistances.jaro_winkler("cheeseburger", "cheese fries")
0.9111111111111111

Contributing

If you don't want to install Rust itself, you can run $ ./dev for a development CLI if you have Docker installed.

Benchmarks require a Nightly toolchain. Run $ cargo +nightly bench.

Credits

strsim: crates - Github

License

MIT