-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsh_attentive_probe_umt.sh
56 lines (51 loc) · 1.64 KB
/
sh_attentive_probe_umt.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env bash
export NUM_GPUS=8
export NNODES=1
export RANK=0
export ADDR="127.0.0.1"
export PORT="32500"
#pt=pretrain ppt=post-pretrain ft=finetune
DATA_ROOT_PATH='/mnt2/video_pretrain_dataset'
DATA_CSV_PATH='/mnt2/video_pretrain_dataset/annotation'
OUTPUT='fewshot_video_report/ActionRecognition'
MODEL_NAME='umt'
# model 2
FINETUNE='checkpoint/umt/umt-L-16____K710_65W_epoch200.pth'
model='vit_large_patch16_224'
EMBEDDING_SIZE=1024
PATCH_SIZE=16
NUM_FRAMES=8
INPUT_SIZE=224
TUBELET_SIZE=1
BATCH_SIZE=192
for SEED in 1
do
for DATASET in K400 K600 K700 SSV2
do
for NUM_SHOTS in 10
do
echo "SEED: $SEED"
echo "DATASET: $DATASET"
echo "NUM_SHOTS: $NUM_SHOTS"
FLASH=1 torchrun --nproc_per_node="${NUM_GPUS}" --nnodes="${NNODES}" \
--node_rank="${RANK}" --master_addr="${ADDR}" --master_port="${PORT}" \
ac_export_feature_and_attentive_probe.py \
--embedding_size ${EMBEDDING_SIZE} \
--data_set ${DATASET} \
--seed ${SEED} \
--num_shots ${NUM_SHOTS} \
--num_step 8 \
--data_root_path ${DATA_ROOT_PATH} \
--data_csv_path ${DATA_CSV_PATH} \
--save_report ${OUTPUT} \
--batch_size ${BATCH_SIZE} \
--model_name ${MODEL_NAME} \
--model ${model} \
--finetune ${FINETUNE} \
--num_frames ${NUM_FRAMES} \
--input_size ${INPUT_SIZE} \
--tubelet_size ${TUBELET_SIZE} \
--patch_size ${PATCH_SIZE}
done
done
done