-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathpipeline_paint3d_stage1.py
287 lines (250 loc) · 9.76 KB
/
pipeline_paint3d_stage1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import sys
import argparse
import os
import cv2
from tqdm import tqdm
import torch
import torchvision
import time
import numpy as np
from PIL import Image
from pathlib import Path
from omegaconf import OmegaConf
from controlnet.diffusers_cnet_txt2img import txt2imgControlNet
from controlnet.diffusers_cnet_inpaint import inpaintControlNet
from paint3d import utils
from paint3d.models.textured_mesh import TexturedMeshModel
from paint3d.dataset import init_dataloaders
from paint3d.trainer import dr_eval, forward_texturing
def inpaint_viewpoint(sd_cfg, cnet, save_result_dir, mesh_model, dataloaders, inpaint_view_ids=[(5, 6)]):
# projection
print(f"Project inpaint view {inpaint_view_ids}...")
view_angle_info = {i:data for i, data in enumerate(dataloaders['train'])}
inpaint_used_key = ["image", "depth", "uncolored_mask"]
for i, one_batch_id in tqdm(enumerate(inpaint_view_ids)):
one_batch_img = []
for view_id in one_batch_id:
data = view_angle_info[view_id]
theta, phi, radius = data['theta'], data['phi'], data['radius']
outputs = mesh_model.render(theta=theta, phi=phi, radius=radius)
view_img_info = [outputs[k] for k in inpaint_used_key]
one_batch_img.append(view_img_info)
for i, img in enumerate(zip(*one_batch_img)):
img = torch.cat(img, dim=3)
if img.size(1) == 1:
img = img.repeat(1, 3, 1, 1)
t = '_'.join(map(str, one_batch_id))
name = inpaint_used_key[i]
if name == "uncolored_mask":
img[img>0] = 1
save_path = os.path.join(save_result_dir, f"view_{t}_{name}.png")
utils.save_tensor_image(img, save_path=save_path)
# inpaint view point
txt_cfg = sd_cfg.txt2img
img_cfg = sd_cfg.inpaint
copy_list = ["prompt", "negative_prompt", "seed", ]
for k in copy_list:
img_cfg[k] = txt_cfg[k]
for i, one_batch_id in tqdm(enumerate(inpaint_view_ids)):
t = '_'.join(map(str, one_batch_id))
rgb_path = os.path.join(save_result_dir, f"view_{t}_{inpaint_used_key[0]}.png")
depth_path = os.path.join(save_result_dir, f"view_{t}_{inpaint_used_key[1]}.png")
mask_path = os.path.join(save_result_dir, f"view_{t}_{inpaint_used_key[2]}.png")
# pre-processing inpaint mask: dilate
mask = cv2.imread(mask_path)
dilate_kernel = 10
mask = cv2.dilate(mask, np.ones((dilate_kernel, dilate_kernel), np.uint8))
mask_path = os.path.join(save_result_dir, f"view_{t}_{inpaint_used_key[2]}_d{dilate_kernel}.png")
cv2.imwrite(mask_path, mask)
img_cfg.image_path = rgb_path
img_cfg.mask_path = mask_path
img_cfg.controlnet_units[0].condition_image_path = depth_path
images = cnet.infernece(config=img_cfg)
for i, img in enumerate(images):
save_path = os.path.join(save_result_dir, f"view_{t}_rgb_inpaint_{i}.png")
img.save(save_path)
return images
def gen_init_view(sd_cfg, cnet, mesh_model, dataloaders, outdir, view_ids=[]):
print(f"Project init view {view_ids}...")
init_depth_map = []
view_angle_info = {i: data for i, data in enumerate(dataloaders['train'])}
for view_id in view_ids:
data = view_angle_info[view_id]
theta, phi, radius = data['theta'], data['phi'], data['radius']
outputs = mesh_model.render(theta=theta, phi=phi, radius=radius)
depth_render = outputs['depth']
init_depth_map.append(depth_render)
init_depth_map = torch.cat(init_depth_map, dim=0).repeat(1, 3, 1, 1)
init_depth_map = torchvision.utils.make_grid(init_depth_map, nrow=2, padding=0)
save_path = os.path.join(outdir, f"init_depth_render.png")
utils.save_tensor_image(init_depth_map.unsqueeze(0), save_path=save_path)
# post-processing depth,dilate
depth_dilated = utils.dilate_depth_outline(save_path, iters=5, dilate_kernel=3)
save_path = os.path.join(outdir, f"init_depth_dilated.png")
cv2.imwrite(save_path, depth_dilated)
print("Generating init view...")
p_cfg = sd_cfg.txt2img
p_cfg.controlnet_units[0].condition_image_path = save_path
images = cnet.infernece(config=p_cfg)
for i, img in enumerate(images):
save_path = os.path.join(outdir, f'init-img-{i}.png')
img.save(save_path)
return images
def init_process(opt):
outdir = opt.outdir
os.makedirs(outdir, exist_ok=True)
pathdir, filename = Path(opt.render_config).parent, Path(opt.render_config).stem
sys.path.append(str(pathdir))
render_cfg = __import__(filename, ).TrainConfig()
utils.seed_everything(render_cfg.optim.seed)
sd_cfg = OmegaConf.load(opt.sd_config)
render_cfg.log.exp_path = str(outdir)
if opt.prompt is not None:
sd_cfg.txt2img.prompt = opt.prompt
if opt.ip_adapter_image_path is not None:
sd_cfg.txt2img.ip_adapter_image_path = opt.ip_adapter_image_path
sd_cfg.inpaint.ip_adapter_image_path = opt.ip_adapter_image_path
if opt.mesh_path is not None:
render_cfg.guide.shape_path = opt.mesh_path
if opt.texture_path is not None:
render_cfg.guide.initial_texture = opt.texture_path
img = Image.open(opt.texture_path)
render_cfg.guide.texture_resolution = img.size
return sd_cfg, render_cfg
def parse():
parser = argparse.ArgumentParser()
parser.add_argument(
"--sd_config",
type=str,
default="stable-diffusion/v2-inpainting-inference.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--render_config",
type=str,
default=" ",
help="path to config which constructs model",
)
parser.add_argument(
"--prompt",
type=str,
help="prompt",
default=None,
)
parser.add_argument(
"--ip_adapter_image_path",
type=str,
help="prompt",
default=None,
)
parser.add_argument(
"--mesh_path",
type=str,
help="path of mesh",
default=None,
)
parser.add_argument(
"--texture_path",
type=str,
help="path of texture image",
default=None,
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/inpainting-samples"
)
opt = parser.parse_args()
return opt
def main():
print("Depth-based 3D Texturing")
opt = parse()
sd_cfg, render_cfg = init_process(opt)
# === 1. create model and data
device = torch.device("cuda")
dataloaders = init_dataloaders(render_cfg, device)
mesh_model = TexturedMeshModel(cfg=render_cfg, device=device,).to(device)
depth_cnet = txt2imgControlNet(sd_cfg.txt2img)
inpaint_cnet = inpaintControlNet(sd_cfg.inpaint)
# === 2. init view generation
total_start = time.time()
start_t = time.time()
init_images = gen_init_view(
sd_cfg=sd_cfg,
cnet=depth_cnet,
mesh_model=mesh_model,
dataloaders=dataloaders,
outdir=opt.outdir,
view_ids=render_cfg.render.views_init,
)
print(f"init view generation time: {time.time() - start_t}")
# init_image_paths = Path(opt.outdir)
# init_image_paths = list(init_image_paths.glob("init-img-*.png"))
# init_image_paths.sort()
# init_images = [Image.open(str(p)) for p in init_image_paths]
for i, init_image in enumerate(init_images):
outdir = Path(opt.outdir) / f"res-{i}"
outdir.mkdir(exist_ok=True)
# back-projection init view
start_t = time.time()
mesh_model.initial_texture_path = None
mesh_model.refresh_texture()
view_imgs = utils.split_grid_image(img=np.array(init_image), size=(1, 2))
forward_texturing(
cfg=render_cfg,
dataloaders=dataloaders,
mesh_model=mesh_model,
save_result_dir=outdir,
device=device,
view_imgs=view_imgs,
view_ids=render_cfg.render.views_init,
verbose=False,
)
print(f"init DR time: {time.time() - start_t}")
# === 3. depth based inpaint
for view_group in render_cfg.render.views_inpaint: # cloth 4 view
start_t = time.time()
print("View inpainting ...")
outdir = Path(opt.outdir) / f"res-{i}"
outdir.mkdir(exist_ok=True)
inpainted_images = inpaint_viewpoint(
sd_cfg=sd_cfg,
cnet=inpaint_cnet,
save_result_dir=outdir,
mesh_model=mesh_model,
dataloaders=dataloaders,
inpaint_view_ids=[view_group],
)
print(f"inpaint view generation time: {time.time() - start_t}")
start_t = time.time()
view_imgs = []
for img_t in inpainted_images:
view_imgs.extend(utils.split_grid_image(img=np.array(img_t), size=(1, 2)))
forward_texturing(
cfg=render_cfg,
dataloaders=dataloaders,
mesh_model=mesh_model,
save_result_dir=outdir,
device=device,
view_imgs=view_imgs,
view_ids=view_group,
verbose=False,
)
print(f"inpaint DR time: {time.time() - start_t}")
print(f"total processed time:{time.time() - total_start}")
mesh_model.initial_texture_path = f"{outdir}/albedo.png"
mesh_model.refresh_texture()
dr_eval(
cfg=render_cfg,
dataloaders=dataloaders,
mesh_model=mesh_model,
save_result_dir=outdir,
valset=True,
verbose=False,
)
mesh_model.empty_texture_cache()
torch.cuda.empty_cache()
if __name__ == '__main__':
main()