-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathengine.py
206 lines (163 loc) · 7.55 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import time, math
import torch
import datetime
from utils.io import save_checkpoint
from utils.misc import SmoothedValue
def compute_learning_rate(args, curr_iter, max_iters):
assert curr_iter <= max_iters and curr_iter >= 0
if (curr_iter <= args.warm_lr_iters) and args.warm_lr_iters > 0:
# Linear Warmup: warm_lr -> curr_lr -> base_lr
curr_lr = args.warm_lr + curr_iter / args.warm_lr_iters * (args.base_lr - args.warm_lr)
else:
# Cosine Learning Rate Schedule
curr_lr = args.final_lr + 0.5 * (args.base_lr - args.final_lr) * (
1 + math.cos(math.pi * curr_iter / max_iters)
)
return curr_lr
def adjust_learning_rate(args, optimizer, curr_iter, max_iters):
curr_lr = compute_learning_rate(args, curr_iter, max_iters)
for param_group in optimizer.param_groups:
param_group["lr"] = curr_lr
return curr_lr
def do_train(
args,
model,
accelerator,
optimizer,
dataloaders,
best_val_metrics,
logger
):
if accelerator.is_main_process:
logger.log_messages(f"call with args: {args}")
logger.log_messages(f"{model}")
curr_iter = args.start_epoch * len(dataloaders['train'])
max_iters = args.max_epoch * len(dataloaders['train'])
time_delta = SmoothedValue(window_size=10)
loss_avg = SmoothedValue(window_size=10)
loss_break_down_avg = {}
model.train()
accelerator.wait_for_everyone()
for curr_epoch in range(args.start_epoch, args.max_epoch):
for batch_idx, batch_data_label in enumerate(dataloaders['train']):
curr_time = time.time()
### core for model training
curr_iter = curr_epoch * len(dataloaders['train']) + batch_idx
curr_lr = adjust_learning_rate(args, optimizer, curr_iter, max_iters)
with accelerator.accumulate(model):
with accelerator.autocast():
outputs = model(batch_data_label)
loss = outputs['loss']
# sanity check, skip the infinite loss
if not math.isfinite(loss.item()):
logger.log_messages("Loss in not finite. Skip this iteration.")
model.eval()
model.train()
torch.cuda.empty_cache()
continue
accelerator.backward(loss)
if args.clip_gradient > 0:
accelerator.clip_grad_norm_(model.parameters(), args.clip_gradient)
optimizer.step()
optimizer.zero_grad()
### logging training loss status
time_delta.update(time.time() - curr_time)
loss_avg.update(loss.item())
for key, value in outputs.items():
if 'loss' in key.lower():
loss_break_down_avg[key] = loss_break_down_avg.get(key, SmoothedValue(window_size=10))
loss_break_down_avg[key].update(value.item())
### writing logs
if accelerator.is_main_process and curr_iter % args.log_every == 0:
mem_mb = torch.cuda.max_memory_allocated() / (1024 ** 2)
eta_seconds = (max_iters - curr_iter) * time_delta.avg
eta_str = str(datetime.timedelta(seconds=int(eta_seconds)))
logger.log_messages(
'; '.join(
[
f"Epoch [{curr_epoch}/{args.max_epoch}]",
f"Iter [{curr_iter}/{max_iters}]",
# loss string
*(
f'{key} {avg.avg:0.4f}' \
for key, avg in loss_break_down_avg.items()
),
# status string
f"LR {curr_lr:0.2e}",
f"Iter time {time_delta.avg:0.2f}s",
f"ETA {eta_str}",
f"Mem {mem_mb:0.2f}MB"
]
)
)
train_loss_log = {k: v.avg for k, v in loss_break_down_avg.items()}
train_loss_log["learning_rate"] = curr_lr
logger.log_scalars(train_loss_log, prefix='train', step=curr_iter)
### saving checkpoints
if accelerator.is_main_process and (curr_iter + 1) % args.save_every == 0:
save_checkpoint(
args.checkpoint_dir,
accelerator.unwrap_model(model),
optimizer,
curr_epoch,
args,
best_val_metrics,
filename=f"checkpoint_{(curr_iter + 1) // 1000}k.pth",
)
### pending and doing evaluations: every xxx after xxx iterations
do_eval_flag = (curr_iter + 1) % args.eval_every_iteration == 0
do_eval_flag &= (curr_iter + 1) > args.start_eval_after
do_eval_flag |= (curr_iter + 1) == max_iters
if do_eval_flag is True:
eval_metrics = {}
model.eval()
with accelerator.autocast():
for test_loader in dataloaders['test']:
task_metrics, eval_loss_dict = test_loader.dataset.eval_func(
args,
curr_epoch,
accelerator.unwrap_model(model),
accelerator,
test_loader,
logger,
curr_train_iter=curr_iter
)
eval_metrics.update(task_metrics)
logger.log_scalars(eval_loss_dict, prefix='val', step=curr_iter)
model.train()
### saving `checkpoint_best.pth` do nothing for unknown criterion
if args.criterion is None:
continue
if not best_val_metrics or (
best_val_metrics[args.criterion] < eval_metrics[args.criterion]
):
best_val_metrics = eval_metrics
filename = "checkpoint_best.pth"
save_checkpoint(
args.checkpoint_dir,
accelerator.unwrap_model(model),
optimizer,
curr_epoch,
args,
best_val_metrics,
filename="checkpoint_best.pth",
)
if accelerator.is_main_process:
logger.log_messages(
f"Epoch [{curr_epoch}/{args.max_epoch}] "
f"saved current best val checkpoint at {filename}; "
f"{args.criterion} {eval_metrics[args.criterion]}"
)
### end of an iteration
### end of an epoch
save_checkpoint(
args.checkpoint_dir,
accelerator.unwrap_model(model),
optimizer,
curr_epoch,
args,
best_val_metrics,
filename="checkpoint.pth",
)
# end of training
return