-
Notifications
You must be signed in to change notification settings - Fork 131
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
OnePlus8 Incoming call black screen #3
Comments
This is still an ongoing issue for op8 users. @OnePlusOSSAdmin @binson-xu Stock kernel binary vs the built from this source gives this issue.. Stock works, kernel built from this source with OnePlus 8 (non pro) has the issue with call screen |
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Jun 23, 2020
kimocoder
referenced
this issue
in kimocoder/nethunter_kernel_oneplus8
Sep 20, 2020
[ Upstream commit b66f31e ] This patch fixes the lock inversion complaint: ============================================ WARNING: possible recursive locking detected 5.3.0-rc7-dbg+ #1 Not tainted -------------------------------------------- kworker/u16:6/171 is trying to acquire lock: 00000000035c6e6c (&id_priv->handler_mutex){+.+.}, at: rdma_destroy_id+0x78/0x4a0 [rdma_cm] but task is already holding lock: 00000000bc7c307d (&id_priv->handler_mutex){+.+.}, at: iw_conn_req_handler+0x151/0x680 [rdma_cm] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&id_priv->handler_mutex); lock(&id_priv->handler_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kworker/u16:6/171: #0: 00000000e2eaa773 ((wq_completion)iw_cm_wq){+.+.}, at: process_one_work+0x472/0xac0 #1: 000000001efd357b ((work_completion)(&work->work)#3){+.+.}, at: process_one_work+0x476/0xac0 #2: 00000000bc7c307d (&id_priv->handler_mutex){+.+.}, at: iw_conn_req_handler+0x151/0x680 [rdma_cm] stack backtrace: CPU: 3 PID: 171 Comm: kworker/u16:6 Not tainted 5.3.0-rc7-dbg+ #1 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Workqueue: iw_cm_wq cm_work_handler [iw_cm] Call Trace: dump_stack+0x8a/0xd6 __lock_acquire.cold+0xe1/0x24d lock_acquire+0x106/0x240 __mutex_lock+0x12e/0xcb0 mutex_lock_nested+0x1f/0x30 rdma_destroy_id+0x78/0x4a0 [rdma_cm] iw_conn_req_handler+0x5c9/0x680 [rdma_cm] cm_work_handler+0xe62/0x1100 [iw_cm] process_one_work+0x56d/0xac0 worker_thread+0x7a/0x5d0 kthread+0x1bc/0x210 ret_from_fork+0x24/0x30 This is not a bug as there are actually two lock classes here. Link: https://lore.kernel.org/r/[email protected] Fixes: de910bd ("RDMA/cma: Simplify locking needed for serialization of callbacks") Signed-off-by: Bart Van Assche <[email protected]> Reviewed-by: Jason Gunthorpe <[email protected]> Signed-off-by: Jason Gunthorpe <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
vutung2311
pushed a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Oct 22, 2020
commit 9765635 upstream. This reverts commit: c54c737 ("drm/dp_mst: Skip validating ports during destruction, just ref") ugh. In drm_dp_destroy_connector_work(), we have a pretty good chance of freeing the actual struct drm_dp_mst_port. However, after destroying things we send a hotplug through (*mgr->cbs->hotplug)(mgr) which is where the problems start. For i915, this calls all the way down to the fbcon probing helpers, which start trying to access the port in a modeset. [ 45.062001] ================================================================== [ 45.062112] BUG: KASAN: use-after-free in ex_handler_refcount+0x146/0x180 [ 45.062196] Write of size 4 at addr ffff8882b4b70968 by task kworker/3:1/53 [ 45.062325] CPU: 3 PID: 53 Comm: kworker/3:1 Kdump: loaded Tainted: G O 4.20.0-rc4Lyude-Test+ OnePlusOSS#3 [ 45.062442] Hardware name: LENOVO 20BWS1KY00/20BWS1KY00, BIOS JBET71WW (1.35 ) 09/14/2018 [ 45.062554] Workqueue: events drm_dp_destroy_connector_work [drm_kms_helper] [ 45.062641] Call Trace: [ 45.062685] dump_stack+0xbd/0x15a [ 45.062735] ? dump_stack_print_info.cold.0+0x1b/0x1b [ 45.062801] ? printk+0x9f/0xc5 [ 45.062847] ? kmsg_dump_rewind_nolock+0xe4/0xe4 [ 45.062909] ? ex_handler_refcount+0x146/0x180 [ 45.062970] print_address_description+0x71/0x239 [ 45.063036] ? ex_handler_refcount+0x146/0x180 [ 45.063095] kasan_report.cold.5+0x242/0x30b [ 45.063155] __asan_report_store4_noabort+0x1c/0x20 [ 45.063313] ex_handler_refcount+0x146/0x180 [ 45.063371] ? ex_handler_clear_fs+0xb0/0xb0 [ 45.063428] fixup_exception+0x98/0xd7 [ 45.063484] ? raw_notifier_call_chain+0x20/0x20 [ 45.063548] do_trap+0x6d/0x210 [ 45.063605] ? _GLOBAL__sub_I_65535_1_drm_dp_aux_unregister_devnode+0x2f/0x1c6 [drm_kms_helper] [ 45.063732] do_error_trap+0xc0/0x170 [ 45.063802] ? _GLOBAL__sub_I_65535_1_drm_dp_aux_unregister_devnode+0x2f/0x1c6 [drm_kms_helper] [ 45.063929] do_invalid_op+0x3b/0x50 [ 45.063997] ? _GLOBAL__sub_I_65535_1_drm_dp_aux_unregister_devnode+0x2f/0x1c6 [drm_kms_helper] [ 45.064103] invalid_op+0x14/0x20 [ 45.064162] RIP: 0010:_GLOBAL__sub_I_65535_1_drm_dp_aux_unregister_devnode+0x2f/0x1c6 [drm_kms_helper] [ 45.064274] Code: 00 48 c7 c7 80 fe 53 a0 48 89 e5 e8 5b 6f 26 e1 5d c3 48 8d 0e 0f 0b 48 8d 0b 0f 0b 48 8d 0f 0f 0b 48 8d 0f 0f 0b 49 8d 4d 00 <0f> 0b 49 8d 0e 0f 0b 48 8d 08 0f 0b 49 8d 4d 00 0f 0b 48 8d 0b 0f [ 45.064569] RSP: 0018:ffff8882b789ee10 EFLAGS: 00010282 [ 45.064637] RAX: ffff8882af47ae70 RBX: ffff8882af47aa60 RCX: ffff8882b4b70968 [ 45.064723] RDX: ffff8882af47ae70 RSI: 0000000000000008 RDI: ffff8882b788bdb8 [ 45.064808] RBP: ffff8882b789ee28 R08: ffffed1056f13db4 R09: ffffed1056f13db3 [ 45.064894] R10: ffffed1056f13db3 R11: ffff8882b789ed9f R12: ffff8882af47ad28 [ 45.064980] R13: ffff8882b4b70968 R14: ffff8882acd86728 R15: ffff8882b4b75dc8 [ 45.065084] drm_dp_mst_reset_vcpi_slots+0x12/0x80 [drm_kms_helper] [ 45.065225] intel_mst_disable_dp+0xda/0x180 [i915] [ 45.065361] intel_encoders_disable.isra.107+0x197/0x310 [i915] [ 45.065498] haswell_crtc_disable+0xbe/0x400 [i915] [ 45.065622] ? i9xx_disable_plane+0x1c0/0x3e0 [i915] [ 45.065750] intel_atomic_commit_tail+0x74e/0x3e60 [i915] [ 45.065884] ? intel_pre_plane_update+0xbc0/0xbc0 [i915] [ 45.065968] ? drm_atomic_helper_swap_state+0x88b/0x1d90 [drm_kms_helper] [ 45.066054] ? kasan_check_write+0x14/0x20 [ 45.066165] ? i915_gem_track_fb+0x13a/0x330 [i915] [ 45.066277] ? i915_sw_fence_complete+0xe9/0x140 [i915] [ 45.066406] ? __i915_sw_fence_complete+0xc50/0xc50 [i915] [ 45.066540] intel_atomic_commit+0x72e/0xef0 [i915] [ 45.066635] ? drm_dev_dbg+0x200/0x200 [drm] [ 45.066764] ? intel_atomic_commit_tail+0x3e60/0x3e60 [i915] [ 45.066898] ? intel_atomic_commit_tail+0x3e60/0x3e60 [i915] [ 45.067001] drm_atomic_commit+0xc4/0xf0 [drm] [ 45.067074] restore_fbdev_mode_atomic+0x562/0x780 [drm_kms_helper] [ 45.067166] ? drm_fb_helper_debug_leave+0x690/0x690 [drm_kms_helper] [ 45.067249] ? kasan_check_read+0x11/0x20 [ 45.067324] restore_fbdev_mode+0x127/0x4b0 [drm_kms_helper] [ 45.067364] ? kasan_check_read+0x11/0x20 [ 45.067406] drm_fb_helper_restore_fbdev_mode_unlocked+0x164/0x200 [drm_kms_helper] [ 45.067462] ? drm_fb_helper_hotplug_event+0x30/0x30 [drm_kms_helper] [ 45.067508] ? kasan_check_write+0x14/0x20 [ 45.070360] ? mutex_unlock+0x22/0x40 [ 45.073748] drm_fb_helper_set_par+0xb2/0xf0 [drm_kms_helper] [ 45.075846] drm_fb_helper_hotplug_event.part.33+0x1cd/0x290 [drm_kms_helper] [ 45.078088] drm_fb_helper_hotplug_event+0x1c/0x30 [drm_kms_helper] [ 45.082614] intel_fbdev_output_poll_changed+0x9f/0x140 [i915] [ 45.087069] drm_kms_helper_hotplug_event+0x67/0x90 [drm_kms_helper] [ 45.089319] intel_dp_mst_hotplug+0x37/0x50 [i915] [ 45.091496] drm_dp_destroy_connector_work+0x510/0x6f0 [drm_kms_helper] [ 45.093675] ? drm_dp_update_payload_part1+0x1220/0x1220 [drm_kms_helper] [ 45.095851] ? kasan_check_write+0x14/0x20 [ 45.098473] ? kasan_check_read+0x11/0x20 [ 45.101155] ? strscpy+0x17c/0x530 [ 45.103808] ? __switch_to_asm+0x34/0x70 [ 45.106456] ? syscall_return_via_sysret+0xf/0x7f [ 45.109711] ? read_word_at_a_time+0x20/0x20 [ 45.113138] ? __switch_to_asm+0x40/0x70 [ 45.116529] ? __switch_to_asm+0x34/0x70 [ 45.119891] ? __switch_to_asm+0x40/0x70 [ 45.123224] ? __switch_to_asm+0x34/0x70 [ 45.126540] ? __switch_to_asm+0x34/0x70 [ 45.129824] process_one_work+0x88d/0x15d0 [ 45.133172] ? pool_mayday_timeout+0x850/0x850 [ 45.136459] ? pci_mmcfg_check_reserved+0x110/0x128 [ 45.139739] ? wake_q_add+0xb0/0xb0 [ 45.143010] ? check_preempt_wakeup+0x652/0x1050 [ 45.146304] ? worker_enter_idle+0x29e/0x740 [ 45.149589] ? __schedule+0x1ec0/0x1ec0 [ 45.152937] ? kasan_check_read+0x11/0x20 [ 45.156179] ? _raw_spin_lock_irq+0xa3/0x130 [ 45.159382] ? _raw_read_unlock_irqrestore+0x30/0x30 [ 45.162542] ? kasan_check_write+0x14/0x20 [ 45.165657] worker_thread+0x1a5/0x1470 [ 45.168725] ? set_load_weight+0x2e0/0x2e0 [ 45.171755] ? process_one_work+0x15d0/0x15d0 [ 45.174806] ? __switch_to_asm+0x34/0x70 [ 45.177645] ? __switch_to_asm+0x40/0x70 [ 45.180323] ? __switch_to_asm+0x34/0x70 [ 45.182936] ? __switch_to_asm+0x40/0x70 [ 45.185539] ? __switch_to_asm+0x34/0x70 [ 45.188100] ? __switch_to_asm+0x40/0x70 [ 45.190628] ? __schedule+0x7d4/0x1ec0 [ 45.193143] ? save_stack+0xa9/0xd0 [ 45.195632] ? kasan_check_write+0x10/0x20 [ 45.198162] ? kasan_kmalloc+0xc4/0xe0 [ 45.200609] ? kmem_cache_alloc_trace+0xdd/0x190 [ 45.203046] ? kthread+0x9f/0x3b0 [ 45.205470] ? ret_from_fork+0x35/0x40 [ 45.207876] ? unwind_next_frame+0x43/0x50 [ 45.210273] ? __save_stack_trace+0x82/0x100 [ 45.212658] ? deactivate_slab.isra.67+0x3d4/0x580 [ 45.215026] ? default_wake_function+0x35/0x50 [ 45.217399] ? kasan_check_read+0x11/0x20 [ 45.219825] ? _raw_spin_lock_irqsave+0xae/0x140 [ 45.222174] ? __lock_text_start+0x8/0x8 [ 45.224521] ? replenish_dl_entity.cold.62+0x4f/0x4f [ 45.226868] ? __kthread_parkme+0x87/0xf0 [ 45.229200] kthread+0x2f7/0x3b0 [ 45.231557] ? process_one_work+0x15d0/0x15d0 [ 45.233923] ? kthread_park+0x120/0x120 [ 45.236249] ret_from_fork+0x35/0x40 [ 45.240875] Allocated by task 242: [ 45.243136] save_stack+0x43/0xd0 [ 45.245385] kasan_kmalloc+0xc4/0xe0 [ 45.247597] kmem_cache_alloc_trace+0xdd/0x190 [ 45.249793] drm_dp_add_port+0x1e0/0x2170 [drm_kms_helper] [ 45.252000] drm_dp_send_link_address+0x4a7/0x740 [drm_kms_helper] [ 45.254389] drm_dp_check_and_send_link_address+0x1a7/0x210 [drm_kms_helper] [ 45.256803] drm_dp_mst_link_probe_work+0x6f/0xb0 [drm_kms_helper] [ 45.259200] process_one_work+0x88d/0x15d0 [ 45.261597] worker_thread+0x1a5/0x1470 [ 45.264038] kthread+0x2f7/0x3b0 [ 45.266371] ret_from_fork+0x35/0x40 [ 45.270937] Freed by task 53: [ 45.273170] save_stack+0x43/0xd0 [ 45.275382] __kasan_slab_free+0x139/0x190 [ 45.277604] kasan_slab_free+0xe/0x10 [ 45.279826] kfree+0x99/0x1b0 [ 45.282044] drm_dp_free_mst_port+0x4a/0x60 [drm_kms_helper] [ 45.284330] drm_dp_destroy_connector_work+0x43e/0x6f0 [drm_kms_helper] [ 45.286660] process_one_work+0x88d/0x15d0 [ 45.288934] worker_thread+0x1a5/0x1470 [ 45.291231] kthread+0x2f7/0x3b0 [ 45.293547] ret_from_fork+0x35/0x40 [ 45.298206] The buggy address belongs to the object at ffff8882b4b70968 which belongs to the cache kmalloc-2k of size 2048 [ 45.303047] The buggy address is located 0 bytes inside of 2048-byte region [ffff8882b4b70968, ffff8882b4b71168) [ 45.308010] The buggy address belongs to the page: [ 45.310477] page:ffffea000ad2dc00 count:1 mapcount:0 mapping:ffff8882c080cf40 index:0x0 compound_mapcount: 0 [ 45.313051] flags: 0x8000000000010200(slab|head) [ 45.315635] raw: 8000000000010200 ffffea000aac2808 ffffea000abe8608 ffff8882c080cf40 [ 45.318300] raw: 0000000000000000 00000000000d000d 00000001ffffffff 0000000000000000 [ 45.320966] page dumped because: kasan: bad access detected [ 45.326312] Memory state around the buggy address: [ 45.329085] ffff8882b4b70800: fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 45.331845] ffff8882b4b70880: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 45.334584] >ffff8882b4b70900: fc fc fc fc fc fc fc fc fc fc fc fc fc fb fb fb [ 45.337302] ^ [ 45.340061] ffff8882b4b70980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 45.342910] ffff8882b4b70a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 45.345748] ================================================================== So, this definitely isn't a fix that we want. This being said; there's no real easy fix for this problem because of some of the catch-22's of the MST helpers current design. For starters; we always need to validate a port with drm_dp_get_validated_port_ref(), but validation relies on the lifetime of the port in the actual topology. So once the port is gone, it can't be validated again. If we were to try to make the payload helpers not use port validation, then we'd cause another problem: if the port isn't validated, it could be freed and we'd just start causing more KASAN issues. There are already hacks that attempt to workaround this in drm_dp_mst_destroy_connector_work() by re-initializing the kref so that it can be used again and it's memory can be freed once the VCPI helpers finish removing the port's respective payloads. But none of these really do anything helpful since the port still can't be validated since it's gone from the topology. Also, that workaround is immensely confusing to read through. What really needs to be done in order to fix this is to teach DRM how to track the lifetime of the structs for MST ports and branch devices separately from their lifetime in the actual topology. Simply put; this means having two different krefs-one that removes the port/branch device from the topology, and one that finally calls kfree(). This would let us simplify things, since we'd now be able to keep ports around without having to keep them in the topology at the same time, which is exactly what we need in order to teach our VCPI helpers to only validate ports when it's actually necessary without running the risk of trying to use unallocated memory. Such a fix is on it's way, but for now let's play it safe and just revert this. If this bug has been around for well over a year, we can wait a little while to get an actual proper fix here. Signed-off-by: Lyude Paul <[email protected]> Fixes: c54c737 ("drm/dp_mst: Skip validating ports during destruction, just ref") Cc: Daniel Vetter <[email protected]> Cc: Sean Paul <[email protected]> Cc: Jerry Zuo <[email protected]> Cc: Harry Wentland <[email protected]> Cc: [email protected] # v4.6+ Acked-by: Sean Paul <[email protected]> Link: https://patchwork.freedesktop.org/patch/msgid/[email protected] Cc: Guenter Roeck <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
vutung2311
pushed a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Oct 22, 2020
commit 28936b6 upstream. inode->i_blocks could be accessed concurrently as noticed by KCSAN, BUG: KCSAN: data-race in ext4_do_update_inode [ext4] / inode_add_bytes write to 0xffff9a00d4b982d0 of 8 bytes by task 22100 on cpu 118: inode_add_bytes+0x65/0xf0 __inode_add_bytes at fs/stat.c:689 (inlined by) inode_add_bytes at fs/stat.c:702 ext4_mb_new_blocks+0x418/0xca0 [ext4] ext4_ext_map_blocks+0x1a6b/0x27b0 [ext4] ext4_map_blocks+0x1a9/0x950 [ext4] _ext4_get_block+0xfc/0x270 [ext4] ext4_get_block_unwritten+0x33/0x50 [ext4] __block_write_begin_int+0x22e/0xae0 __block_write_begin+0x39/0x50 ext4_write_begin+0x388/0xb50 [ext4] ext4_da_write_begin+0x35f/0x8f0 [ext4] generic_perform_write+0x15d/0x290 ext4_buffered_write_iter+0x11f/0x210 [ext4] ext4_file_write_iter+0xce/0x9e0 [ext4] new_sync_write+0x29c/0x3b0 __vfs_write+0x92/0xa0 vfs_write+0x103/0x260 ksys_write+0x9d/0x130 __x64_sys_write+0x4c/0x60 do_syscall_64+0x91/0xb05 entry_SYSCALL_64_after_hwframe+0x49/0xbe read to 0xffff9a00d4b982d0 of 8 bytes by task 8 on cpu 65: ext4_do_update_inode+0x4a0/0xf60 [ext4] ext4_inode_blocks_set at fs/ext4/inode.c:4815 ext4_mark_iloc_dirty+0xaf/0x160 [ext4] ext4_mark_inode_dirty+0x129/0x3e0 [ext4] ext4_convert_unwritten_extents+0x253/0x2d0 [ext4] ext4_convert_unwritten_io_end_vec+0xc5/0x150 [ext4] ext4_end_io_rsv_work+0x22c/0x350 [ext4] process_one_work+0x54f/0xb90 worker_thread+0x80/0x5f0 kthread+0x1cd/0x1f0 ret_from_fork+0x27/0x50 4 locks held by kworker/u256:0/8: #0: ffff9a025abc4328 ((wq_completion)ext4-rsv-conversion){+.+.}, at: process_one_work+0x443/0xb90 OnePlusOSS#1: ffffab5a862dbe20 ((work_completion)(&ei->i_rsv_conversion_work)){+.+.}, at: process_one_work+0x443/0xb90 OnePlusOSS#2: ffff9a025a9d0f58 (jbd2_handle){++++}, at: start_this_handle+0x1c1/0x9d0 [jbd2] OnePlusOSS#3: ffff9a00d4b985d8 (&(&ei->i_raw_lock)->rlock){+.+.}, at: ext4_do_update_inode+0xaa/0xf60 [ext4] irq event stamp: 3009267 hardirqs last enabled at (3009267): [<ffffffff980da9b7>] __find_get_block+0x107/0x790 hardirqs last disabled at (3009266): [<ffffffff980da8f9>] __find_get_block+0x49/0x790 softirqs last enabled at (3009230): [<ffffffff98a0034c>] __do_softirq+0x34c/0x57c softirqs last disabled at (3009223): [<ffffffff97cc67a2>] irq_exit+0xa2/0xc0 Reported by Kernel Concurrency Sanitizer on: CPU: 65 PID: 8 Comm: kworker/u256:0 Tainted: G L 5.6.0-rc2-next-20200221+ OnePlusOSS#7 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019 Workqueue: ext4-rsv-conversion ext4_end_io_rsv_work [ext4] The plain read is outside of inode->i_lock critical section which results in a data race. Fix it by adding READ_ONCE() there. Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Qian Cai <[email protected]> Signed-off-by: Theodore Ts'o <[email protected]> Cc: [email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]>
vutung2311
pushed a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Oct 22, 2020
[ Upstream commit a866759 ] This reverts commit 64e62bd. This commit ends up causing some lockdep splats due to trying to grab the payload lock while holding the mgr's lock: [ 54.010099] [ 54.011765] ====================================================== [ 54.018670] WARNING: possible circular locking dependency detected [ 54.025577] 5.5.0-rc6-02274-g77381c23ee63 OnePlusOSS#47 Not tainted [ 54.031610] ------------------------------------------------------ [ 54.038516] kworker/1:6/1040 is trying to acquire lock: [ 54.044354] ffff888272af3228 (&mgr->payload_lock){+.+.}, at: drm_dp_mst_topology_mgr_set_mst+0x218/0x2e4 [ 54.054957] [ 54.054957] but task is already holding lock: [ 54.061473] ffff888272af3060 (&mgr->lock){+.+.}, at: drm_dp_mst_topology_mgr_set_mst+0x3c/0x2e4 [ 54.071193] [ 54.071193] which lock already depends on the new lock. [ 54.071193] [ 54.080334] [ 54.080334] the existing dependency chain (in reverse order) is: [ 54.088697] [ 54.088697] -> OnePlusOSS#1 (&mgr->lock){+.+.}: [ 54.094440] __mutex_lock+0xc3/0x498 [ 54.099015] drm_dp_mst_topology_get_port_validated+0x25/0x80 [ 54.106018] drm_dp_update_payload_part1+0xa2/0x2e2 [ 54.112051] intel_mst_pre_enable_dp+0x144/0x18f [ 54.117791] intel_encoders_pre_enable+0x63/0x70 [ 54.123532] hsw_crtc_enable+0xa1/0x722 [ 54.128396] intel_update_crtc+0x50/0x194 [ 54.133455] skl_commit_modeset_enables+0x40c/0x540 [ 54.139485] intel_atomic_commit_tail+0x5f7/0x130d [ 54.145418] intel_atomic_commit+0x2c8/0x2d8 [ 54.150770] drm_atomic_helper_set_config+0x5a/0x70 [ 54.156801] drm_mode_setcrtc+0x2ab/0x833 [ 54.161862] drm_ioctl+0x2e5/0x424 [ 54.166242] vfs_ioctl+0x21/0x2f [ 54.170426] do_vfs_ioctl+0x5fb/0x61e [ 54.175096] ksys_ioctl+0x55/0x75 [ 54.179377] __x64_sys_ioctl+0x1a/0x1e [ 54.184146] do_syscall_64+0x5c/0x6d [ 54.188721] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 54.194946] [ 54.194946] -> #0 (&mgr->payload_lock){+.+.}: [ 54.201463] [ 54.201463] other info that might help us debug this: [ 54.201463] [ 54.210410] Possible unsafe locking scenario: [ 54.210410] [ 54.217025] CPU0 CPU1 [ 54.222082] ---- ---- [ 54.227138] lock(&mgr->lock); [ 54.230643] lock(&mgr->payload_lock); [ 54.237742] lock(&mgr->lock); [ 54.244062] lock(&mgr->payload_lock); [ 54.248346] [ 54.248346] *** DEADLOCK *** [ 54.248346] [ 54.254959] 7 locks held by kworker/1:6/1040: [ 54.259822] #0: ffff888275c4f528 ((wq_completion)events){+.+.}, at: worker_thread+0x455/0x6e2 [ 54.269451] OnePlusOSS#1: ffffc9000119beb0 ((work_completion)(&(&dev_priv->hotplug.hotplug_work)->work)){+.+.}, at: worker_thread+0x455/0x6e2 [ 54.282768] OnePlusOSS#2: ffff888272a403f0 (&dev->mode_config.mutex){+.+.}, at: i915_hotplug_work_func+0x4b/0x2be [ 54.293368] OnePlusOSS#3: ffffffff824fc6c0 (drm_connector_list_iter){.+.+}, at: i915_hotplug_work_func+0x17e/0x2be [ 54.304061] OnePlusOSS#4: ffffc9000119bc58 (crtc_ww_class_acquire){+.+.}, at: drm_helper_probe_detect_ctx+0x40/0xfd [ 54.314855] OnePlusOSS#5: ffff888272a40470 (crtc_ww_class_mutex){+.+.}, at: drm_modeset_lock+0x74/0xe2 [ 54.324385] OnePlusOSS#6: ffff888272af3060 (&mgr->lock){+.+.}, at: drm_dp_mst_topology_mgr_set_mst+0x3c/0x2e4 [ 54.334597] [ 54.334597] stack backtrace: [ 54.339464] CPU: 1 PID: 1040 Comm: kworker/1:6 Not tainted 5.5.0-rc6-02274-g77381c23ee63 OnePlusOSS#47 [ 54.348893] Hardware name: Google Fizz/Fizz, BIOS Google_Fizz.10139.39.0 01/04/2018 [ 54.357451] Workqueue: events i915_hotplug_work_func [ 54.362995] Call Trace: [ 54.365724] dump_stack+0x71/0x9c [ 54.369427] check_noncircular+0x91/0xbc [ 54.373809] ? __lock_acquire+0xc9e/0xf66 [ 54.378286] ? __lock_acquire+0xc9e/0xf66 [ 54.382763] ? lock_acquire+0x175/0x1ac [ 54.387048] ? drm_dp_mst_topology_mgr_set_mst+0x218/0x2e4 [ 54.393177] ? __mutex_lock+0xc3/0x498 [ 54.397362] ? drm_dp_mst_topology_mgr_set_mst+0x218/0x2e4 [ 54.403492] ? drm_dp_mst_topology_mgr_set_mst+0x218/0x2e4 [ 54.409620] ? drm_dp_dpcd_access+0xd9/0x101 [ 54.414390] ? drm_dp_mst_topology_mgr_set_mst+0x218/0x2e4 [ 54.420517] ? drm_dp_mst_topology_mgr_set_mst+0x218/0x2e4 [ 54.426645] ? intel_digital_port_connected+0x34d/0x35c [ 54.432482] ? intel_dp_detect+0x227/0x44e [ 54.437056] ? ww_mutex_lock+0x49/0x9a [ 54.441242] ? drm_helper_probe_detect_ctx+0x75/0xfd [ 54.446789] ? intel_encoder_hotplug+0x4b/0x97 [ 54.451752] ? intel_ddi_hotplug+0x61/0x2e0 [ 54.456423] ? mark_held_locks+0x53/0x68 [ 54.460803] ? _raw_spin_unlock_irqrestore+0x3a/0x51 [ 54.466347] ? lockdep_hardirqs_on+0x187/0x1a4 [ 54.471310] ? drm_connector_list_iter_next+0x89/0x9a [ 54.476953] ? i915_hotplug_work_func+0x206/0x2be [ 54.482208] ? worker_thread+0x4d5/0x6e2 [ 54.486587] ? worker_thread+0x455/0x6e2 [ 54.490966] ? queue_work_on+0x64/0x64 [ 54.495151] ? kthread+0x1e9/0x1f1 [ 54.498946] ? queue_work_on+0x64/0x64 [ 54.503130] ? kthread_unpark+0x5e/0x5e [ 54.507413] ? ret_from_fork+0x3a/0x50 The proper fix for this is probably cleanup the VCPI allocations when we're enabling the topology, or on the first payload allocation. For now though, let's just revert. Signed-off-by: Lyude Paul <[email protected]> Fixes: 64e62bd ("drm/dp_mst: Remove VCPI while disabling topology mgr") Cc: Sean Paul <[email protected]> Cc: Wayne Lin <[email protected]> Reviewed-by: Sean Paul <[email protected]> Link: https://patchwork.freedesktop.org/patch/msgid/[email protected] Signed-off-by: Sasha Levin <[email protected]>
vutung2311
pushed a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Oct 22, 2020
commit d3ec10a upstream. A lockdep circular locking dependency report was seen when running a keyutils test: [12537.027242] ====================================================== [12537.059309] WARNING: possible circular locking dependency detected [12537.088148] 4.18.0-147.7.1.el8_1.x86_64+debug OnePlusOSS#1 Tainted: G OE --------- - - [12537.125253] ------------------------------------------------------ [12537.153189] keyctl/25598 is trying to acquire lock: [12537.175087] 000000007c39f96c (&mm->mmap_sem){++++}, at: __might_fault+0xc4/0x1b0 [12537.208365] [12537.208365] but task is already holding lock: [12537.234507] 000000003de5b58d (&type->lock_class){++++}, at: keyctl_read_key+0x15a/0x220 [12537.270476] [12537.270476] which lock already depends on the new lock. [12537.270476] [12537.307209] [12537.307209] the existing dependency chain (in reverse order) is: [12537.340754] [12537.340754] -> OnePlusOSS#3 (&type->lock_class){++++}: [12537.367434] down_write+0x4d/0x110 [12537.385202] __key_link_begin+0x87/0x280 [12537.405232] request_key_and_link+0x483/0xf70 [12537.427221] request_key+0x3c/0x80 [12537.444839] dns_query+0x1db/0x5a5 [dns_resolver] [12537.468445] dns_resolve_server_name_to_ip+0x1e1/0x4d0 [cifs] [12537.496731] cifs_reconnect+0xe04/0x2500 [cifs] [12537.519418] cifs_readv_from_socket+0x461/0x690 [cifs] [12537.546263] cifs_read_from_socket+0xa0/0xe0 [cifs] [12537.573551] cifs_demultiplex_thread+0x311/0x2db0 [cifs] [12537.601045] kthread+0x30c/0x3d0 [12537.617906] ret_from_fork+0x3a/0x50 [12537.636225] [12537.636225] -> OnePlusOSS#2 (root_key_user.cons_lock){+.+.}: [12537.664525] __mutex_lock+0x105/0x11f0 [12537.683734] request_key_and_link+0x35a/0xf70 [12537.705640] request_key+0x3c/0x80 [12537.723304] dns_query+0x1db/0x5a5 [dns_resolver] [12537.746773] dns_resolve_server_name_to_ip+0x1e1/0x4d0 [cifs] [12537.775607] cifs_reconnect+0xe04/0x2500 [cifs] [12537.798322] cifs_readv_from_socket+0x461/0x690 [cifs] [12537.823369] cifs_read_from_socket+0xa0/0xe0 [cifs] [12537.847262] cifs_demultiplex_thread+0x311/0x2db0 [cifs] [12537.873477] kthread+0x30c/0x3d0 [12537.890281] ret_from_fork+0x3a/0x50 [12537.908649] [12537.908649] -> OnePlusOSS#1 (&tcp_ses->srv_mutex){+.+.}: [12537.935225] __mutex_lock+0x105/0x11f0 [12537.954450] cifs_call_async+0x102/0x7f0 [cifs] [12537.977250] smb2_async_readv+0x6c3/0xc90 [cifs] [12538.000659] cifs_readpages+0x120a/0x1e50 [cifs] [12538.023920] read_pages+0xf5/0x560 [12538.041583] __do_page_cache_readahead+0x41d/0x4b0 [12538.067047] ondemand_readahead+0x44c/0xc10 [12538.092069] filemap_fault+0xec1/0x1830 [12538.111637] __do_fault+0x82/0x260 [12538.129216] do_fault+0x419/0xfb0 [12538.146390] __handle_mm_fault+0x862/0xdf0 [12538.167408] handle_mm_fault+0x154/0x550 [12538.187401] __do_page_fault+0x42f/0xa60 [12538.207395] do_page_fault+0x38/0x5e0 [12538.225777] page_fault+0x1e/0x30 [12538.243010] [12538.243010] -> #0 (&mm->mmap_sem){++++}: [12538.267875] lock_acquire+0x14c/0x420 [12538.286848] __might_fault+0x119/0x1b0 [12538.306006] keyring_read_iterator+0x7e/0x170 [12538.327936] assoc_array_subtree_iterate+0x97/0x280 [12538.352154] keyring_read+0xe9/0x110 [12538.370558] keyctl_read_key+0x1b9/0x220 [12538.391470] do_syscall_64+0xa5/0x4b0 [12538.410511] entry_SYSCALL_64_after_hwframe+0x6a/0xdf [12538.435535] [12538.435535] other info that might help us debug this: [12538.435535] [12538.472829] Chain exists of: [12538.472829] &mm->mmap_sem --> root_key_user.cons_lock --> &type->lock_class [12538.472829] [12538.524820] Possible unsafe locking scenario: [12538.524820] [12538.551431] CPU0 CPU1 [12538.572654] ---- ---- [12538.595865] lock(&type->lock_class); [12538.613737] lock(root_key_user.cons_lock); [12538.644234] lock(&type->lock_class); [12538.672410] lock(&mm->mmap_sem); [12538.687758] [12538.687758] *** DEADLOCK *** [12538.687758] [12538.714455] 1 lock held by keyctl/25598: [12538.732097] #0: 000000003de5b58d (&type->lock_class){++++}, at: keyctl_read_key+0x15a/0x220 [12538.770573] [12538.770573] stack backtrace: [12538.790136] CPU: 2 PID: 25598 Comm: keyctl Kdump: loaded Tainted: G [12538.844855] Hardware name: HP ProLiant DL360 Gen9/ProLiant DL360 Gen9, BIOS P89 12/27/2015 [12538.881963] Call Trace: [12538.892897] dump_stack+0x9a/0xf0 [12538.907908] print_circular_bug.isra.25.cold.50+0x1bc/0x279 [12538.932891] ? save_trace+0xd6/0x250 [12538.948979] check_prev_add.constprop.32+0xc36/0x14f0 [12538.971643] ? keyring_compare_object+0x104/0x190 [12538.992738] ? check_usage+0x550/0x550 [12539.009845] ? sched_clock+0x5/0x10 [12539.025484] ? sched_clock_cpu+0x18/0x1e0 [12539.043555] __lock_acquire+0x1f12/0x38d0 [12539.061551] ? trace_hardirqs_on+0x10/0x10 [12539.080554] lock_acquire+0x14c/0x420 [12539.100330] ? __might_fault+0xc4/0x1b0 [12539.119079] __might_fault+0x119/0x1b0 [12539.135869] ? __might_fault+0xc4/0x1b0 [12539.153234] keyring_read_iterator+0x7e/0x170 [12539.172787] ? keyring_read+0x110/0x110 [12539.190059] assoc_array_subtree_iterate+0x97/0x280 [12539.211526] keyring_read+0xe9/0x110 [12539.227561] ? keyring_gc_check_iterator+0xc0/0xc0 [12539.249076] keyctl_read_key+0x1b9/0x220 [12539.266660] do_syscall_64+0xa5/0x4b0 [12539.283091] entry_SYSCALL_64_after_hwframe+0x6a/0xdf One way to prevent this deadlock scenario from happening is to not allow writing to userspace while holding the key semaphore. Instead, an internal buffer is allocated for getting the keys out from the read method first before copying them out to userspace without holding the lock. That requires taking out the __user modifier from all the relevant read methods as well as additional changes to not use any userspace write helpers. That is, 1) The put_user() call is replaced by a direct copy. 2) The copy_to_user() call is replaced by memcpy(). 3) All the fault handling code is removed. Compiling on a x86-64 system, the size of the rxrpc_read() function is reduced from 3795 bytes to 2384 bytes with this patch. Fixes: ^1da177e4c3f4 ("Linux-2.6.12-rc2") Reviewed-by: Jarkko Sakkinen <[email protected]> Signed-off-by: Waiman Long <[email protected]> Signed-off-by: David Howells <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
vutung2311
pushed a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Oct 22, 2020
Two consecutive "make" on an already compiled kernel tree will show different behavior: $ make CALL scripts/checksyscalls.sh CALL scripts/atomic/check-atomics.sh DESCEND objtool CHK include/generated/compile.h VDSOCHK arch/x86/entry/vdso/vdso64.so.dbg VDSOCHK arch/x86/entry/vdso/vdso32.so.dbg Kernel: arch/x86/boot/bzImage is ready (OnePlusOSS#3) Building modules, stage 2. MODPOST 12 modules $ make make CALL scripts/checksyscalls.sh CALL scripts/atomic/check-atomics.sh DESCEND objtool CHK include/generated/compile.h VDSO arch/x86/entry/vdso/vdso64.so.dbg OBJCOPY arch/x86/entry/vdso/vdso64.so VDSO2C arch/x86/entry/vdso/vdso-image-64.c CC arch/x86/entry/vdso/vdso-image-64.o VDSO arch/x86/entry/vdso/vdso32.so.dbg OBJCOPY arch/x86/entry/vdso/vdso32.so VDSO2C arch/x86/entry/vdso/vdso-image-32.c CC arch/x86/entry/vdso/vdso-image-32.o AR arch/x86/entry/vdso/built-in.a AR arch/x86/entry/built-in.a AR arch/x86/built-in.a GEN .version CHK include/generated/compile.h UPD include/generated/compile.h CC init/version.o AR init/built-in.a LD vmlinux.o <snip> This is causing "LD vmlinux" once every two times even without any modifications. This is the same bug fixed in commit 92a4728 ("x86/boot: Fix if_changed build flip/flop bug"). Two "if_changed" cannot be used in one target. Fix this merging two commands into one function. Fixes: 7ac8707 ("x86/vdso: Switch to generic vDSO implementation") Signed-off-by: Naohiro Aota <[email protected]> Signed-off-by: Thomas Gleixner <[email protected]> Tested-by: Vincenzo Frascino <[email protected]> Reviewed-by: Vincenzo Frascino <[email protected]> Reviewed-by: Masahiro Yamada <[email protected]> Link: https://lkml.kernel.org/r/[email protected] (cherry picked from commit e9a1379) Signed-off-by: Mark Salyzyn <[email protected]> Bug: 154668398 Change-Id: Icb94029fbdce1ec2308a7432ec067a8dd820a8e8
vutung2311
pushed a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Oct 22, 2020
[ Upstream commit d3296fb ] We hit following warning when running tests on kernel compiled with CONFIG_DEBUG_ATOMIC_SLEEP=y: WARNING: CPU: 19 PID: 4472 at mm/gup.c:2381 __get_user_pages_fast+0x1a4/0x200 CPU: 19 PID: 4472 Comm: dummy Not tainted 5.6.0-rc6+ OnePlusOSS#3 RIP: 0010:__get_user_pages_fast+0x1a4/0x200 ... Call Trace: perf_prepare_sample+0xff1/0x1d90 perf_event_output_forward+0xe8/0x210 __perf_event_overflow+0x11a/0x310 __intel_pmu_pebs_event+0x657/0x850 intel_pmu_drain_pebs_nhm+0x7de/0x11d0 handle_pmi_common+0x1b2/0x650 intel_pmu_handle_irq+0x17b/0x370 perf_event_nmi_handler+0x40/0x60 nmi_handle+0x192/0x590 default_do_nmi+0x6d/0x150 do_nmi+0x2f9/0x3c0 nmi+0x8e/0xd7 While __get_user_pages_fast() is IRQ-safe, it calls access_ok(), which warns on: WARN_ON_ONCE(!in_task() && !pagefault_disabled()) Peter suggested disabling page faults around __get_user_pages_fast(), which gets rid of the warning in access_ok() call. Suggested-by: Peter Zijlstra <[email protected]> Signed-off-by: Jiri Olsa <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Signed-off-by: Ingo Molnar <[email protected]> Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Sasha Levin <[email protected]>
vutung2311
pushed a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Oct 22, 2020
commit 10a98cb upstream. Leaving PF_MEMALLOC set when exiting a kthread causes it to remain set during do_exit(). That can confuse things. In particular, if BSD process accounting is enabled, then do_exit() writes data to an accounting file. If that file has FS_SYNC_FL set, then this write occurs synchronously and can misbehave if PF_MEMALLOC is set. For example, if the accounting file is located on an XFS filesystem, then a WARN_ON_ONCE() in iomap_do_writepage() is triggered and the data doesn't get written when it should. Or if the accounting file is located on an ext4 filesystem without a journal, then a WARN_ON_ONCE() in ext4_write_inode() is triggered and the inode doesn't get written. Fix this in xfsaild() by using the helper functions to save and restore PF_MEMALLOC. This can be reproduced as follows in the kvm-xfstests test appliance modified to add the 'acct' Debian package, and with kvm-xfstests's recommended kconfig modified to add CONFIG_BSD_PROCESS_ACCT=y: mkfs.xfs -f /dev/vdb mount /vdb touch /vdb/file chattr +S /vdb/file accton /vdb/file mkfs.xfs -f /dev/vdc mount /vdc umount /vdc It causes: WARNING: CPU: 1 PID: 336 at fs/iomap/buffered-io.c:1534 CPU: 1 PID: 336 Comm: xfsaild/vdc Not tainted 5.6.0-rc5 OnePlusOSS#3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20191223_100556-anatol 04/01/2014 RIP: 0010:iomap_do_writepage+0x16b/0x1f0 fs/iomap/buffered-io.c:1534 [...] Call Trace: write_cache_pages+0x189/0x4d0 mm/page-writeback.c:2238 iomap_writepages+0x1c/0x33 fs/iomap/buffered-io.c:1642 xfs_vm_writepages+0x65/0x90 fs/xfs/xfs_aops.c:578 do_writepages+0x41/0xe0 mm/page-writeback.c:2344 __filemap_fdatawrite_range+0xd2/0x120 mm/filemap.c:421 file_write_and_wait_range+0x71/0xc0 mm/filemap.c:760 xfs_file_fsync+0x7a/0x2b0 fs/xfs/xfs_file.c:114 generic_write_sync include/linux/fs.h:2867 [inline] xfs_file_buffered_aio_write+0x379/0x3b0 fs/xfs/xfs_file.c:691 call_write_iter include/linux/fs.h:1901 [inline] new_sync_write+0x130/0x1d0 fs/read_write.c:483 __kernel_write+0x54/0xe0 fs/read_write.c:515 do_acct_process+0x122/0x170 kernel/acct.c:522 slow_acct_process kernel/acct.c:581 [inline] acct_process+0x1d4/0x27c kernel/acct.c:607 do_exit+0x83d/0xbc0 kernel/exit.c:791 kthread+0xf1/0x140 kernel/kthread.c:257 ret_from_fork+0x27/0x50 arch/x86/entry/entry_64.S:352 This bug was originally reported by syzbot at https://lore.kernel.org/r/[email protected]. Reported-by: [email protected] Signed-off-by: Eric Biggers <[email protected]> Reviewed-by: Darrick J. Wong <[email protected]> Signed-off-by: Darrick J. Wong <[email protected]> Reviewed-by: Christoph Hellwig <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
vutung2311
pushed a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Oct 22, 2020
commit 5cbf326 upstream. Use follow_pfn() to get the PFN of a PFNMAP VMA instead of assuming that vma->vm_pgoff holds the base PFN of the VMA. This fixes a bug where attempting to do VFIO_IOMMU_MAP_DMA on an arbitrary PFNMAP'd region of memory calculates garbage for the PFN. Hilariously, this only got detected because the first "PFN" calculated by vaddr_get_pfn() is PFN 0 (vma->vm_pgoff==0), and iommu_iova_to_phys() uses PA==0 as an error, which triggers a WARN in vfio_unmap_unpin() because the translation "failed". PFN 0 is now unconditionally reserved on x86 in order to mitigate L1TF, which causes is_invalid_reserved_pfn() to return true and in turns results in vaddr_get_pfn() returning success for PFN 0. Eventually the bogus calculation runs into PFNs that aren't reserved and leads to failure in vfio_pin_map_dma(). The subsequent call to vfio_remove_dma() attempts to unmap PFN 0 and WARNs. WARNING: CPU: 8 PID: 5130 at drivers/vfio/vfio_iommu_type1.c:750 vfio_unmap_unpin+0x2e1/0x310 [vfio_iommu_type1] Modules linked in: vfio_pci vfio_virqfd vfio_iommu_type1 vfio ... CPU: 8 PID: 5130 Comm: sgx Tainted: G W 5.6.0-rc5-705d787c7fee-vfio+ OnePlusOSS#3 Hardware name: Intel Corporation Mehlow UP Server Platform/Moss Beach Server, BIOS CNLSE2R1.D00.X119.B49.1803010910 03/01/2018 RIP: 0010:vfio_unmap_unpin+0x2e1/0x310 [vfio_iommu_type1] Code: <0f> 0b 49 81 c5 00 10 00 00 e9 c5 fe ff ff bb 00 10 00 00 e9 3d fe RSP: 0018:ffffbeb5039ebda8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff9a55cbf8d480 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff9a52b771c200 RBP: 0000000000000000 R08: 0000000000000040 R09: 00000000fffffff2 R10: 0000000000000001 R11: ffff9a51fa896000 R12: 0000000184010000 R13: 0000000184000000 R14: 0000000000010000 R15: ffff9a55cb66ea08 FS: 00007f15d3830b40(0000) GS:ffff9a55d5600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561cf39429e0 CR3: 000000084f75f005 CR4: 00000000003626e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: vfio_remove_dma+0x17/0x70 [vfio_iommu_type1] vfio_iommu_type1_ioctl+0x9e3/0xa7b [vfio_iommu_type1] ksys_ioctl+0x92/0xb0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x4c/0x180 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15d04c75d7 Code: <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 81 48 2d 00 f7 d8 64 89 01 48 Fixes: 73fa0d1 ("vfio: Type1 IOMMU implementation") Signed-off-by: Sean Christopherson <[email protected]> Signed-off-by: Alex Williamson <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
vutung2311
pushed a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Oct 22, 2020
…f fs_info::journal_info commit fcc9973 upstream. [BUG] One run of btrfs/063 triggered the following lockdep warning: ============================================ WARNING: possible recursive locking detected 5.6.0-rc7-custom+ #48 Not tainted -------------------------------------------- kworker/u24:0/7 is trying to acquire lock: ffff88817d3a46e0 (sb_internal#2){.+.+}, at: start_transaction+0x66c/0x890 [btrfs] but task is already holding lock: ffff88817d3a46e0 (sb_internal#2){.+.+}, at: start_transaction+0x66c/0x890 [btrfs] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(sb_internal#2); lock(sb_internal#2); *** DEADLOCK *** May be due to missing lock nesting notation 4 locks held by kworker/u24:0/7: #0: ffff88817b495948 ((wq_completion)btrfs-endio-write){+.+.}, at: process_one_work+0x557/0xb80 OnePlusOSS#1: ffff888189ea7db8 ((work_completion)(&work->normal_work)){+.+.}, at: process_one_work+0x557/0xb80 OnePlusOSS#2: ffff88817d3a46e0 (sb_internal#2){.+.+}, at: start_transaction+0x66c/0x890 [btrfs] OnePlusOSS#3: ffff888174ca4da8 (&fs_info->reloc_mutex){+.+.}, at: btrfs_record_root_in_trans+0x83/0xd0 [btrfs] stack backtrace: CPU: 0 PID: 7 Comm: kworker/u24:0 Not tainted 5.6.0-rc7-custom+ #48 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Workqueue: btrfs-endio-write btrfs_work_helper [btrfs] Call Trace: dump_stack+0xc2/0x11a __lock_acquire.cold+0xce/0x214 lock_acquire+0xe6/0x210 __sb_start_write+0x14e/0x290 start_transaction+0x66c/0x890 [btrfs] btrfs_join_transaction+0x1d/0x20 [btrfs] find_free_extent+0x1504/0x1a50 [btrfs] btrfs_reserve_extent+0xd5/0x1f0 [btrfs] btrfs_alloc_tree_block+0x1ac/0x570 [btrfs] btrfs_copy_root+0x213/0x580 [btrfs] create_reloc_root+0x3bd/0x470 [btrfs] btrfs_init_reloc_root+0x2d2/0x310 [btrfs] record_root_in_trans+0x191/0x1d0 [btrfs] btrfs_record_root_in_trans+0x90/0xd0 [btrfs] start_transaction+0x16e/0x890 [btrfs] btrfs_join_transaction+0x1d/0x20 [btrfs] btrfs_finish_ordered_io+0x55d/0xcd0 [btrfs] finish_ordered_fn+0x15/0x20 [btrfs] btrfs_work_helper+0x116/0x9a0 [btrfs] process_one_work+0x632/0xb80 worker_thread+0x80/0x690 kthread+0x1a3/0x1f0 ret_from_fork+0x27/0x50 It's pretty hard to reproduce, only one hit so far. [CAUSE] This is because we're calling btrfs_join_transaction() without re-using the current running one: btrfs_finish_ordered_io() |- btrfs_join_transaction() <<< Call OnePlusOSS#1 |- btrfs_record_root_in_trans() |- btrfs_reserve_extent() |- btrfs_join_transaction() <<< Call OnePlusOSS#2 Normally such btrfs_join_transaction() call should re-use the existing one, without trying to re-start a transaction. But the problem is, in btrfs_join_transaction() call OnePlusOSS#1, we call btrfs_record_root_in_trans() before initializing current::journal_info. And in btrfs_join_transaction() call OnePlusOSS#2, we're relying on current::journal_info to avoid such deadlock. [FIX] Call btrfs_record_root_in_trans() after we have initialized current::journal_info. CC: [email protected] # 4.4+ Signed-off-by: Qu Wenruo <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
drgreenth
pushed a commit
to drgreenth/android_kernel_oneplus_sm8250
that referenced
this issue
Jan 31, 2021
Our static-static calculation returns a failure if the public key is of low order. We check for this when peers are added, and don't allow them to be added if they're low order, except in the case where we haven't yet been given a private key. In that case, we would defer the removal of the peer until we're given a private key, since at that point we're doing new static-static calculations which incur failures we can act on. This meant, however, that we wound up removing peers rather late in the configuration flow. Syzkaller points out that peer_remove calls flush_workqueue, which in turn might then wait for sending a handshake initiation to complete. Since handshake initiation needs the static identity lock, holding the static identity lock while calling peer_remove can result in a rare deadlock. We have precisely this case in this situation of late-stage peer removal based on an invalid public key. We can't drop the lock when removing, because then incoming handshakes might interact with a bogus static-static calculation. While the band-aid patch for this would involve breaking up the peer removal into two steps like wg_peer_remove_all does, in order to solve the locking issue, there's actually a much more elegant way of fixing this: If the static-static calculation succeeds with one private key, it *must* succeed with all others, because all 32-byte strings map to valid private keys, thanks to clamping. That means we can get rid of this silly dance and locking headaches of removing peers late in the configuration flow, and instead just reject them early on, regardless of whether the device has yet been assigned a private key. For the case where the device doesn't yet have a private key, we safely use zeros just for the purposes of checking for low order points by way of checking the output of the calculation. The following PoC will trigger the deadlock: ip link add wg0 type wireguard ip addr add 10.0.0.1/24 dev wg0 ip link set wg0 up ping -f 10.0.0.2 & while true; do wg set wg0 private-key /dev/null peer AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= allowed-ips 10.0.0.0/24 endpoint 10.0.0.3:1234 wg set wg0 private-key <(echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=) done [ 0.949105] ====================================================== [ 0.949550] WARNING: possible circular locking dependency detected [ 0.950143] 5.5.0-debug+ OnePlusOSS#18 Not tainted [ 0.950431] ------------------------------------------------------ [ 0.950959] wg/89 is trying to acquire lock: [ 0.951252] ffff8880333e2128 ((wq_completion)wg-kex-wg0){+.+.}, at: flush_workqueue+0xe3/0x12f0 [ 0.951865] [ 0.951865] but task is already holding lock: [ 0.952280] ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0 [ 0.953011] [ 0.953011] which lock already depends on the new lock. [ 0.953011] [ 0.953651] [ 0.953651] the existing dependency chain (in reverse order) is: [ 0.954292] [ 0.954292] -> OnePlusOSS#2 (&wg->static_identity.lock){++++}: [ 0.954804] lock_acquire+0x127/0x350 [ 0.955133] down_read+0x83/0x410 [ 0.955428] wg_noise_handshake_create_initiation+0x97/0x700 [ 0.955885] wg_packet_send_handshake_initiation+0x13a/0x280 [ 0.956401] wg_packet_handshake_send_worker+0x10/0x20 [ 0.956841] process_one_work+0x806/0x1500 [ 0.957167] worker_thread+0x8c/0xcb0 [ 0.957549] kthread+0x2ee/0x3b0 [ 0.957792] ret_from_fork+0x24/0x30 [ 0.958234] [ 0.958234] -> OnePlusOSS#1 ((work_completion)(&peer->transmit_handshake_work)){+.+.}: [ 0.958808] lock_acquire+0x127/0x350 [ 0.959075] process_one_work+0x7ab/0x1500 [ 0.959369] worker_thread+0x8c/0xcb0 [ 0.959639] kthread+0x2ee/0x3b0 [ 0.959896] ret_from_fork+0x24/0x30 [ 0.960346] [ 0.960346] -> #0 ((wq_completion)wg-kex-wg0){+.+.}: [ 0.960945] check_prev_add+0x167/0x1e20 [ 0.961351] __lock_acquire+0x2012/0x3170 [ 0.961725] lock_acquire+0x127/0x350 [ 0.961990] flush_workqueue+0x106/0x12f0 [ 0.962280] peer_remove_after_dead+0x160/0x220 [ 0.962600] wg_set_device+0xa24/0xcc0 [ 0.962994] genl_rcv_msg+0x52f/0xe90 [ 0.963298] netlink_rcv_skb+0x111/0x320 [ 0.963618] genl_rcv+0x1f/0x30 [ 0.963853] netlink_unicast+0x3f6/0x610 [ 0.964245] netlink_sendmsg+0x700/0xb80 [ 0.964586] __sys_sendto+0x1dd/0x2c0 [ 0.964854] __x64_sys_sendto+0xd8/0x1b0 [ 0.965141] do_syscall_64+0x90/0xd9a [ 0.965408] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 0.965769] [ 0.965769] other info that might help us debug this: [ 0.965769] [ 0.966337] Chain exists of: [ 0.966337] (wq_completion)wg-kex-wg0 --> (work_completion)(&peer->transmit_handshake_work) --> &wg->static_identity.lock [ 0.966337] [ 0.967417] Possible unsafe locking scenario: [ 0.967417] [ 0.967836] CPU0 CPU1 [ 0.968155] ---- ---- [ 0.968497] lock(&wg->static_identity.lock); [ 0.968779] lock((work_completion)(&peer->transmit_handshake_work)); [ 0.969345] lock(&wg->static_identity.lock); [ 0.969809] lock((wq_completion)wg-kex-wg0); [ 0.970146] [ 0.970146] *** DEADLOCK *** [ 0.970146] [ 0.970531] 5 locks held by wg/89: [ 0.970908] #0: ffffffff827433c8 (cb_lock){++++}, at: genl_rcv+0x10/0x30 [ 0.971400] OnePlusOSS#1: ffffffff82743480 (genl_mutex){+.+.}, at: genl_rcv_msg+0x642/0xe90 [ 0.971924] OnePlusOSS#2: ffffffff827160c0 (rtnl_mutex){+.+.}, at: wg_set_device+0x9f/0xcc0 [ 0.972488] OnePlusOSS#3: ffff888032819de0 (&wg->device_update_lock){+.+.}, at: wg_set_device+0xb0/0xcc0 [ 0.973095] OnePlusOSS#4: ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0 [ 0.973653] [ 0.973653] stack backtrace: [ 0.973932] CPU: 1 PID: 89 Comm: wg Not tainted 5.5.0-debug+ OnePlusOSS#18 [ 0.974476] Call Trace: [ 0.974638] dump_stack+0x97/0xe0 [ 0.974869] check_noncircular+0x312/0x3e0 [ 0.975132] ? print_circular_bug+0x1f0/0x1f0 [ 0.975410] ? __kernel_text_address+0x9/0x30 [ 0.975727] ? unwind_get_return_address+0x51/0x90 [ 0.976024] check_prev_add+0x167/0x1e20 [ 0.976367] ? graph_lock+0x70/0x160 [ 0.976682] __lock_acquire+0x2012/0x3170 [ 0.976998] ? register_lock_class+0x1140/0x1140 [ 0.977323] lock_acquire+0x127/0x350 [ 0.977627] ? flush_workqueue+0xe3/0x12f0 [ 0.977890] flush_workqueue+0x106/0x12f0 [ 0.978147] ? flush_workqueue+0xe3/0x12f0 [ 0.978410] ? find_held_lock+0x2c/0x110 [ 0.978662] ? lock_downgrade+0x6e0/0x6e0 [ 0.978919] ? queue_rcu_work+0x60/0x60 [ 0.979166] ? netif_napi_del+0x151/0x3b0 [ 0.979501] ? peer_remove_after_dead+0x160/0x220 [ 0.979871] peer_remove_after_dead+0x160/0x220 [ 0.980232] wg_set_device+0xa24/0xcc0 [ 0.980516] ? deref_stack_reg+0x8e/0xc0 [ 0.980801] ? set_peer+0xe10/0xe10 [ 0.981040] ? __ww_mutex_check_waiters+0x150/0x150 [ 0.981430] ? __nla_validate_parse+0x163/0x270 [ 0.981719] ? genl_family_rcv_msg_attrs_parse+0x13f/0x310 [ 0.982078] genl_rcv_msg+0x52f/0xe90 [ 0.982348] ? genl_family_rcv_msg_attrs_parse+0x310/0x310 [ 0.982690] ? register_lock_class+0x1140/0x1140 [ 0.983049] netlink_rcv_skb+0x111/0x320 [ 0.983298] ? genl_family_rcv_msg_attrs_parse+0x310/0x310 [ 0.983645] ? netlink_ack+0x880/0x880 [ 0.983888] genl_rcv+0x1f/0x30 [ 0.984168] netlink_unicast+0x3f6/0x610 [ 0.984443] ? netlink_detachskb+0x60/0x60 [ 0.984729] ? find_held_lock+0x2c/0x110 [ 0.984976] netlink_sendmsg+0x700/0xb80 [ 0.985220] ? netlink_broadcast_filtered+0xa60/0xa60 [ 0.985533] __sys_sendto+0x1dd/0x2c0 [ 0.985763] ? __x64_sys_getpeername+0xb0/0xb0 [ 0.986039] ? sockfd_lookup_light+0x17/0x160 [ 0.986397] ? __sys_recvmsg+0x8c/0xf0 [ 0.986711] ? __sys_recvmsg_sock+0xd0/0xd0 [ 0.987018] __x64_sys_sendto+0xd8/0x1b0 [ 0.987283] ? lockdep_hardirqs_on+0x39b/0x5a0 [ 0.987666] do_syscall_64+0x90/0xd9a [ 0.987903] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 0.988223] RIP: 0033:0x7fe77c12003e [ 0.988508] Code: c3 8b 07 85 c0 75 24 49 89 fb 48 89 f0 48 89 d7 48 89 ce 4c 89 c2 4d 89 ca 4c 8b 44 24 08 4c 8b 4c 24 10 4c 4 [ 0.989666] RSP: 002b:00007fffada2ed58 EFLAGS: 00000246 ORIG_RAX: 000000000000002c [ 0.990137] RAX: ffffffffffffffda RBX: 00007fe77c159d48 RCX: 00007fe77c12003e [ 0.990583] RDX: 0000000000000040 RSI: 000055fd1d38e020 RDI: 0000000000000004 [ 0.991091] RBP: 000055fd1d38e020 R08: 000055fd1cb63358 R09: 000000000000000c [ 0.991568] R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000002c [ 0.992014] R13: 0000000000000004 R14: 000055fd1d38e020 R15: 0000000000000001 Signed-off-by: Jason A. Donenfeld <[email protected]> Reported-by: syzbot <[email protected]> Signed-off-by: David S. Miller <[email protected]> (cherry picked from commit ec31c26) Bug: 152722841 Signed-off-by: Jason A. Donenfeld <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]> Change-Id: I860bfac72c98c8c9b26f4490b4f346dc67892f87 Signed-off-by: engstk <[email protected]>
drgreenth
pushed a commit
to drgreenth/android_kernel_oneplus_sm8250
that referenced
this issue
Feb 1, 2021
Our static-static calculation returns a failure if the public key is of low order. We check for this when peers are added, and don't allow them to be added if they're low order, except in the case where we haven't yet been given a private key. In that case, we would defer the removal of the peer until we're given a private key, since at that point we're doing new static-static calculations which incur failures we can act on. This meant, however, that we wound up removing peers rather late in the configuration flow. Syzkaller points out that peer_remove calls flush_workqueue, which in turn might then wait for sending a handshake initiation to complete. Since handshake initiation needs the static identity lock, holding the static identity lock while calling peer_remove can result in a rare deadlock. We have precisely this case in this situation of late-stage peer removal based on an invalid public key. We can't drop the lock when removing, because then incoming handshakes might interact with a bogus static-static calculation. While the band-aid patch for this would involve breaking up the peer removal into two steps like wg_peer_remove_all does, in order to solve the locking issue, there's actually a much more elegant way of fixing this: If the static-static calculation succeeds with one private key, it *must* succeed with all others, because all 32-byte strings map to valid private keys, thanks to clamping. That means we can get rid of this silly dance and locking headaches of removing peers late in the configuration flow, and instead just reject them early on, regardless of whether the device has yet been assigned a private key. For the case where the device doesn't yet have a private key, we safely use zeros just for the purposes of checking for low order points by way of checking the output of the calculation. The following PoC will trigger the deadlock: ip link add wg0 type wireguard ip addr add 10.0.0.1/24 dev wg0 ip link set wg0 up ping -f 10.0.0.2 & while true; do wg set wg0 private-key /dev/null peer AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= allowed-ips 10.0.0.0/24 endpoint 10.0.0.3:1234 wg set wg0 private-key <(echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=) done [ 0.949105] ====================================================== [ 0.949550] WARNING: possible circular locking dependency detected [ 0.950143] 5.5.0-debug+ OnePlusOSS#18 Not tainted [ 0.950431] ------------------------------------------------------ [ 0.950959] wg/89 is trying to acquire lock: [ 0.951252] ffff8880333e2128 ((wq_completion)wg-kex-wg0){+.+.}, at: flush_workqueue+0xe3/0x12f0 [ 0.951865] [ 0.951865] but task is already holding lock: [ 0.952280] ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0 [ 0.953011] [ 0.953011] which lock already depends on the new lock. [ 0.953011] [ 0.953651] [ 0.953651] the existing dependency chain (in reverse order) is: [ 0.954292] [ 0.954292] -> OnePlusOSS#2 (&wg->static_identity.lock){++++}: [ 0.954804] lock_acquire+0x127/0x350 [ 0.955133] down_read+0x83/0x410 [ 0.955428] wg_noise_handshake_create_initiation+0x97/0x700 [ 0.955885] wg_packet_send_handshake_initiation+0x13a/0x280 [ 0.956401] wg_packet_handshake_send_worker+0x10/0x20 [ 0.956841] process_one_work+0x806/0x1500 [ 0.957167] worker_thread+0x8c/0xcb0 [ 0.957549] kthread+0x2ee/0x3b0 [ 0.957792] ret_from_fork+0x24/0x30 [ 0.958234] [ 0.958234] -> OnePlusOSS#1 ((work_completion)(&peer->transmit_handshake_work)){+.+.}: [ 0.958808] lock_acquire+0x127/0x350 [ 0.959075] process_one_work+0x7ab/0x1500 [ 0.959369] worker_thread+0x8c/0xcb0 [ 0.959639] kthread+0x2ee/0x3b0 [ 0.959896] ret_from_fork+0x24/0x30 [ 0.960346] [ 0.960346] -> #0 ((wq_completion)wg-kex-wg0){+.+.}: [ 0.960945] check_prev_add+0x167/0x1e20 [ 0.961351] __lock_acquire+0x2012/0x3170 [ 0.961725] lock_acquire+0x127/0x350 [ 0.961990] flush_workqueue+0x106/0x12f0 [ 0.962280] peer_remove_after_dead+0x160/0x220 [ 0.962600] wg_set_device+0xa24/0xcc0 [ 0.962994] genl_rcv_msg+0x52f/0xe90 [ 0.963298] netlink_rcv_skb+0x111/0x320 [ 0.963618] genl_rcv+0x1f/0x30 [ 0.963853] netlink_unicast+0x3f6/0x610 [ 0.964245] netlink_sendmsg+0x700/0xb80 [ 0.964586] __sys_sendto+0x1dd/0x2c0 [ 0.964854] __x64_sys_sendto+0xd8/0x1b0 [ 0.965141] do_syscall_64+0x90/0xd9a [ 0.965408] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 0.965769] [ 0.965769] other info that might help us debug this: [ 0.965769] [ 0.966337] Chain exists of: [ 0.966337] (wq_completion)wg-kex-wg0 --> (work_completion)(&peer->transmit_handshake_work) --> &wg->static_identity.lock [ 0.966337] [ 0.967417] Possible unsafe locking scenario: [ 0.967417] [ 0.967836] CPU0 CPU1 [ 0.968155] ---- ---- [ 0.968497] lock(&wg->static_identity.lock); [ 0.968779] lock((work_completion)(&peer->transmit_handshake_work)); [ 0.969345] lock(&wg->static_identity.lock); [ 0.969809] lock((wq_completion)wg-kex-wg0); [ 0.970146] [ 0.970146] *** DEADLOCK *** [ 0.970146] [ 0.970531] 5 locks held by wg/89: [ 0.970908] #0: ffffffff827433c8 (cb_lock){++++}, at: genl_rcv+0x10/0x30 [ 0.971400] OnePlusOSS#1: ffffffff82743480 (genl_mutex){+.+.}, at: genl_rcv_msg+0x642/0xe90 [ 0.971924] OnePlusOSS#2: ffffffff827160c0 (rtnl_mutex){+.+.}, at: wg_set_device+0x9f/0xcc0 [ 0.972488] OnePlusOSS#3: ffff888032819de0 (&wg->device_update_lock){+.+.}, at: wg_set_device+0xb0/0xcc0 [ 0.973095] OnePlusOSS#4: ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0 [ 0.973653] [ 0.973653] stack backtrace: [ 0.973932] CPU: 1 PID: 89 Comm: wg Not tainted 5.5.0-debug+ OnePlusOSS#18 [ 0.974476] Call Trace: [ 0.974638] dump_stack+0x97/0xe0 [ 0.974869] check_noncircular+0x312/0x3e0 [ 0.975132] ? print_circular_bug+0x1f0/0x1f0 [ 0.975410] ? __kernel_text_address+0x9/0x30 [ 0.975727] ? unwind_get_return_address+0x51/0x90 [ 0.976024] check_prev_add+0x167/0x1e20 [ 0.976367] ? graph_lock+0x70/0x160 [ 0.976682] __lock_acquire+0x2012/0x3170 [ 0.976998] ? register_lock_class+0x1140/0x1140 [ 0.977323] lock_acquire+0x127/0x350 [ 0.977627] ? flush_workqueue+0xe3/0x12f0 [ 0.977890] flush_workqueue+0x106/0x12f0 [ 0.978147] ? flush_workqueue+0xe3/0x12f0 [ 0.978410] ? find_held_lock+0x2c/0x110 [ 0.978662] ? lock_downgrade+0x6e0/0x6e0 [ 0.978919] ? queue_rcu_work+0x60/0x60 [ 0.979166] ? netif_napi_del+0x151/0x3b0 [ 0.979501] ? peer_remove_after_dead+0x160/0x220 [ 0.979871] peer_remove_after_dead+0x160/0x220 [ 0.980232] wg_set_device+0xa24/0xcc0 [ 0.980516] ? deref_stack_reg+0x8e/0xc0 [ 0.980801] ? set_peer+0xe10/0xe10 [ 0.981040] ? __ww_mutex_check_waiters+0x150/0x150 [ 0.981430] ? __nla_validate_parse+0x163/0x270 [ 0.981719] ? genl_family_rcv_msg_attrs_parse+0x13f/0x310 [ 0.982078] genl_rcv_msg+0x52f/0xe90 [ 0.982348] ? genl_family_rcv_msg_attrs_parse+0x310/0x310 [ 0.982690] ? register_lock_class+0x1140/0x1140 [ 0.983049] netlink_rcv_skb+0x111/0x320 [ 0.983298] ? genl_family_rcv_msg_attrs_parse+0x310/0x310 [ 0.983645] ? netlink_ack+0x880/0x880 [ 0.983888] genl_rcv+0x1f/0x30 [ 0.984168] netlink_unicast+0x3f6/0x610 [ 0.984443] ? netlink_detachskb+0x60/0x60 [ 0.984729] ? find_held_lock+0x2c/0x110 [ 0.984976] netlink_sendmsg+0x700/0xb80 [ 0.985220] ? netlink_broadcast_filtered+0xa60/0xa60 [ 0.985533] __sys_sendto+0x1dd/0x2c0 [ 0.985763] ? __x64_sys_getpeername+0xb0/0xb0 [ 0.986039] ? sockfd_lookup_light+0x17/0x160 [ 0.986397] ? __sys_recvmsg+0x8c/0xf0 [ 0.986711] ? __sys_recvmsg_sock+0xd0/0xd0 [ 0.987018] __x64_sys_sendto+0xd8/0x1b0 [ 0.987283] ? lockdep_hardirqs_on+0x39b/0x5a0 [ 0.987666] do_syscall_64+0x90/0xd9a [ 0.987903] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 0.988223] RIP: 0033:0x7fe77c12003e [ 0.988508] Code: c3 8b 07 85 c0 75 24 49 89 fb 48 89 f0 48 89 d7 48 89 ce 4c 89 c2 4d 89 ca 4c 8b 44 24 08 4c 8b 4c 24 10 4c 4 [ 0.989666] RSP: 002b:00007fffada2ed58 EFLAGS: 00000246 ORIG_RAX: 000000000000002c [ 0.990137] RAX: ffffffffffffffda RBX: 00007fe77c159d48 RCX: 00007fe77c12003e [ 0.990583] RDX: 0000000000000040 RSI: 000055fd1d38e020 RDI: 0000000000000004 [ 0.991091] RBP: 000055fd1d38e020 R08: 000055fd1cb63358 R09: 000000000000000c [ 0.991568] R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000002c [ 0.992014] R13: 0000000000000004 R14: 000055fd1d38e020 R15: 0000000000000001 Signed-off-by: Jason A. Donenfeld <[email protected]> Reported-by: syzbot <[email protected]> Signed-off-by: David S. Miller <[email protected]> (cherry picked from commit ec31c26) Bug: 152722841 Signed-off-by: Jason A. Donenfeld <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]> Change-Id: I860bfac72c98c8c9b26f4490b4f346dc67892f87 Signed-off-by: Hannes Ylä-Jääski <[email protected]>
vutung2311
pushed a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Feb 27, 2021
Two consecutive "make" on an already compiled kernel tree will show different behavior: $ make CALL scripts/checksyscalls.sh CALL scripts/atomic/check-atomics.sh DESCEND objtool CHK include/generated/compile.h VDSOCHK arch/x86/entry/vdso/vdso64.so.dbg VDSOCHK arch/x86/entry/vdso/vdso32.so.dbg Kernel: arch/x86/boot/bzImage is ready (OnePlusOSS#3) Building modules, stage 2. MODPOST 12 modules $ make make CALL scripts/checksyscalls.sh CALL scripts/atomic/check-atomics.sh DESCEND objtool CHK include/generated/compile.h VDSO arch/x86/entry/vdso/vdso64.so.dbg OBJCOPY arch/x86/entry/vdso/vdso64.so VDSO2C arch/x86/entry/vdso/vdso-image-64.c CC arch/x86/entry/vdso/vdso-image-64.o VDSO arch/x86/entry/vdso/vdso32.so.dbg OBJCOPY arch/x86/entry/vdso/vdso32.so VDSO2C arch/x86/entry/vdso/vdso-image-32.c CC arch/x86/entry/vdso/vdso-image-32.o AR arch/x86/entry/vdso/built-in.a AR arch/x86/entry/built-in.a AR arch/x86/built-in.a GEN .version CHK include/generated/compile.h UPD include/generated/compile.h CC init/version.o AR init/built-in.a LD vmlinux.o <snip> This is causing "LD vmlinux" once every two times even without any modifications. This is the same bug fixed in commit 92a4728 ("x86/boot: Fix if_changed build flip/flop bug"). Two "if_changed" cannot be used in one target. Fix this merging two commands into one function. Fixes: 7ac8707 ("x86/vdso: Switch to generic vDSO implementation") Signed-off-by: Naohiro Aota <[email protected]> Signed-off-by: Thomas Gleixner <[email protected]> Tested-by: Vincenzo Frascino <[email protected]> Reviewed-by: Vincenzo Frascino <[email protected]> Reviewed-by: Masahiro Yamada <[email protected]> Link: https://lkml.kernel.org/r/[email protected] (cherry picked from commit e9a1379) Signed-off-by: Mark Salyzyn <[email protected]> Bug: 154668398 Change-Id: Icb94029fbdce1ec2308a7432ec067a8dd820a8e8
vutung2311
added a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Feb 27, 2021
…iver_skb_wq 02-22 00:12:51.066 0 0 W : [20210222_00:12:51.066158]@1 CFI failure (target: rmnet_shs_assign.cfi_jt+0x0/0x4): 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066237]@1 WARNING: CPU: 1 PID: 0 at kernel/cfi.c:31 __cfi_check_fail+0x44/0x4c 02-22 00:12:51.067 0 0 W : [20210222_00:12:51.066250]@1 Modules linked in: wcd938x_slave_dlkm(FO) stub_dlkm(FO) swr_dlkm(FO) pinctrl_wcd_dlkm(FO) snd_event_dlkm(FO) 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066301]@1 CPU: 1 PID: 0 Comm: swapper/1 Tainted: GFS W O 4.19.113-perf+ OnePlusOSS#3 02-22 00:12:51.067 0 0 W : [20210222_00:12:51.066314]@1 Hardware name: Qualcomm Technologies, Inc. kona MTP dvt/mp 19811 14 15 52 53 (DT) 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066328]@1 pstate: 60400005 (nZCv daif +PAN -UAO) 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066342]@1 pc: __cfi_check_fail+0x44/0x4c 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066355]@1 lr: __cfi_check_fail+0x44/0x4c 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066364]@1 sp: ffffff801000b9f0 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066375]@1 x29: ffffff801000b9f0 x28: 0000000000000034 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066390]@1 x27: ffffffe06faffb80 x26: ffffff801000bb48 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066403]@1 x25: ffffffe06faffb90 x24: cccccccccccccccd 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066416]@1 x23: ffffff9f50e8e000 x22: 0000000000000001 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066430]@1 x21: 29bb8dd6c0dc5b44 x20: ffffff9f53f28f30 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066443]@1 x19: ffffff9f5280c5c4 x18: ffffffe0bfa12288 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066456]@1 x17: 00000000000afa10 x16: 000000000003890a 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066468]@1 x15: 0000000000000004 x14: 0000000000000064 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066480]@1 x13: 00000000000af9d8 x12: 0000000000000000 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066492]@1 x11: 0000000000000000 x10: ffffffffffffffff 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066505]@1 x9: cf4e998a6e05ca00 x8 : cf4e998a6e05ca00 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066517]@1 x7: 0000000000000000 x6 : ffffffe0bfac1c57 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066529]@1 x5: 0000000000000000 x4 : 0000000000000000 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066541]@1 x3: 000000000000003a x2 : 0000000000000001 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066553]@1 x1: 0000000000000000 x0 : 0000000000000053 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066570]@1 Call trace: 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066595]@1 __cfi_check_fail+0x44/0x4c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066622]@1 __cfi_check+0x42bcc/0x48580 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066651]@1 rmnet_deliver_skb+0x9c/0x314 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066672]@1 rmnet_frag_deliver+0x634/0x780 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066692]@1 rmnet_frag_ingress_handler+0x30c/0x3f8 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066708]@1 rmnet_rx_handler+0xe0/0x29c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066741]@1 __netif_receive_skb_core+0x478/0xdfc 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066756]@1 __netif_receive_skb+0x44/0x174 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066778]@1 process_backlog+0x120/0x2a8 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066792]@1 napi_poll+0x94/0x328 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066808]@1 net_rx_action+0xac/0x248 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066829]@1 __do_softirq+0x114/0x450 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066855]@1 irq_exit+0xc0/0xc4 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066881]@1 handle_IPI+0x104/0x39c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066899]@1 gic_handle_irq+0x90/0x16c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066916]@1 el1_irq+0xe8/0x190 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066948]@1 lpm_cpuidle_enter+0x228/0x400 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066967]@1 cpuidle_enter_state+0x120/0x410 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066997]@1 do_idle.llvm.9417574252142394113+0x1b4/0x28c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.067011]@1 cpu_startup_entry+0x20/0x24 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.067026]@1 __cpu_disable+0x0/0xe0
vutung2311
pushed a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Mar 15, 2021
Two consecutive "make" on an already compiled kernel tree will show different behavior: $ make CALL scripts/checksyscalls.sh CALL scripts/atomic/check-atomics.sh DESCEND objtool CHK include/generated/compile.h VDSOCHK arch/x86/entry/vdso/vdso64.so.dbg VDSOCHK arch/x86/entry/vdso/vdso32.so.dbg Kernel: arch/x86/boot/bzImage is ready (OnePlusOSS#3) Building modules, stage 2. MODPOST 12 modules $ make make CALL scripts/checksyscalls.sh CALL scripts/atomic/check-atomics.sh DESCEND objtool CHK include/generated/compile.h VDSO arch/x86/entry/vdso/vdso64.so.dbg OBJCOPY arch/x86/entry/vdso/vdso64.so VDSO2C arch/x86/entry/vdso/vdso-image-64.c CC arch/x86/entry/vdso/vdso-image-64.o VDSO arch/x86/entry/vdso/vdso32.so.dbg OBJCOPY arch/x86/entry/vdso/vdso32.so VDSO2C arch/x86/entry/vdso/vdso-image-32.c CC arch/x86/entry/vdso/vdso-image-32.o AR arch/x86/entry/vdso/built-in.a AR arch/x86/entry/built-in.a AR arch/x86/built-in.a GEN .version CHK include/generated/compile.h UPD include/generated/compile.h CC init/version.o AR init/built-in.a LD vmlinux.o <snip> This is causing "LD vmlinux" once every two times even without any modifications. This is the same bug fixed in commit 92a4728 ("x86/boot: Fix if_changed build flip/flop bug"). Two "if_changed" cannot be used in one target. Fix this merging two commands into one function. Fixes: 7ac8707 ("x86/vdso: Switch to generic vDSO implementation") Signed-off-by: Naohiro Aota <[email protected]> Signed-off-by: Thomas Gleixner <[email protected]> Tested-by: Vincenzo Frascino <[email protected]> Reviewed-by: Vincenzo Frascino <[email protected]> Reviewed-by: Masahiro Yamada <[email protected]> Link: https://lkml.kernel.org/r/[email protected] (cherry picked from commit e9a1379) Signed-off-by: Mark Salyzyn <[email protected]> Bug: 154668398 Change-Id: Icb94029fbdce1ec2308a7432ec067a8dd820a8e8
vutung2311
added a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Mar 15, 2021
…iver_skb_wq 02-22 00:12:51.066 0 0 W : [20210222_00:12:51.066158]@1 CFI failure (target: rmnet_shs_assign.cfi_jt+0x0/0x4): 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066237]@1 WARNING: CPU: 1 PID: 0 at kernel/cfi.c:31 __cfi_check_fail+0x44/0x4c 02-22 00:12:51.067 0 0 W : [20210222_00:12:51.066250]@1 Modules linked in: wcd938x_slave_dlkm(FO) stub_dlkm(FO) swr_dlkm(FO) pinctrl_wcd_dlkm(FO) snd_event_dlkm(FO) 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066301]@1 CPU: 1 PID: 0 Comm: swapper/1 Tainted: GFS W O 4.19.113-perf+ OnePlusOSS#3 02-22 00:12:51.067 0 0 W : [20210222_00:12:51.066314]@1 Hardware name: Qualcomm Technologies, Inc. kona MTP dvt/mp 19811 14 15 52 53 (DT) 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066328]@1 pstate: 60400005 (nZCv daif +PAN -UAO) 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066342]@1 pc: __cfi_check_fail+0x44/0x4c 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066355]@1 lr: __cfi_check_fail+0x44/0x4c 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066364]@1 sp: ffffff801000b9f0 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066375]@1 x29: ffffff801000b9f0 x28: 0000000000000034 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066390]@1 x27: ffffffe06faffb80 x26: ffffff801000bb48 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066403]@1 x25: ffffffe06faffb90 x24: cccccccccccccccd 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066416]@1 x23: ffffff9f50e8e000 x22: 0000000000000001 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066430]@1 x21: 29bb8dd6c0dc5b44 x20: ffffff9f53f28f30 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066443]@1 x19: ffffff9f5280c5c4 x18: ffffffe0bfa12288 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066456]@1 x17: 00000000000afa10 x16: 000000000003890a 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066468]@1 x15: 0000000000000004 x14: 0000000000000064 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066480]@1 x13: 00000000000af9d8 x12: 0000000000000000 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066492]@1 x11: 0000000000000000 x10: ffffffffffffffff 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066505]@1 x9: cf4e998a6e05ca00 x8 : cf4e998a6e05ca00 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066517]@1 x7: 0000000000000000 x6 : ffffffe0bfac1c57 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066529]@1 x5: 0000000000000000 x4 : 0000000000000000 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066541]@1 x3: 000000000000003a x2 : 0000000000000001 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066553]@1 x1: 0000000000000000 x0 : 0000000000000053 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066570]@1 Call trace: 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066595]@1 __cfi_check_fail+0x44/0x4c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066622]@1 __cfi_check+0x42bcc/0x48580 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066651]@1 rmnet_deliver_skb+0x9c/0x314 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066672]@1 rmnet_frag_deliver+0x634/0x780 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066692]@1 rmnet_frag_ingress_handler+0x30c/0x3f8 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066708]@1 rmnet_rx_handler+0xe0/0x29c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066741]@1 __netif_receive_skb_core+0x478/0xdfc 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066756]@1 __netif_receive_skb+0x44/0x174 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066778]@1 process_backlog+0x120/0x2a8 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066792]@1 napi_poll+0x94/0x328 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066808]@1 net_rx_action+0xac/0x248 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066829]@1 __do_softirq+0x114/0x450 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066855]@1 irq_exit+0xc0/0xc4 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066881]@1 handle_IPI+0x104/0x39c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066899]@1 gic_handle_irq+0x90/0x16c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066916]@1 el1_irq+0xe8/0x190 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066948]@1 lpm_cpuidle_enter+0x228/0x400 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066967]@1 cpuidle_enter_state+0x120/0x410 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066997]@1 do_idle.llvm.9417574252142394113+0x1b4/0x28c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.067011]@1 cpu_startup_entry+0x20/0x24 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.067026]@1 __cpu_disable+0x0/0xe0
vutung2311
pushed a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Jun 8, 2021
Two consecutive "make" on an already compiled kernel tree will show different behavior: $ make CALL scripts/checksyscalls.sh CALL scripts/atomic/check-atomics.sh DESCEND objtool CHK include/generated/compile.h VDSOCHK arch/x86/entry/vdso/vdso64.so.dbg VDSOCHK arch/x86/entry/vdso/vdso32.so.dbg Kernel: arch/x86/boot/bzImage is ready (OnePlusOSS#3) Building modules, stage 2. MODPOST 12 modules $ make make CALL scripts/checksyscalls.sh CALL scripts/atomic/check-atomics.sh DESCEND objtool CHK include/generated/compile.h VDSO arch/x86/entry/vdso/vdso64.so.dbg OBJCOPY arch/x86/entry/vdso/vdso64.so VDSO2C arch/x86/entry/vdso/vdso-image-64.c CC arch/x86/entry/vdso/vdso-image-64.o VDSO arch/x86/entry/vdso/vdso32.so.dbg OBJCOPY arch/x86/entry/vdso/vdso32.so VDSO2C arch/x86/entry/vdso/vdso-image-32.c CC arch/x86/entry/vdso/vdso-image-32.o AR arch/x86/entry/vdso/built-in.a AR arch/x86/entry/built-in.a AR arch/x86/built-in.a GEN .version CHK include/generated/compile.h UPD include/generated/compile.h CC init/version.o AR init/built-in.a LD vmlinux.o <snip> This is causing "LD vmlinux" once every two times even without any modifications. This is the same bug fixed in commit 92a4728 ("x86/boot: Fix if_changed build flip/flop bug"). Two "if_changed" cannot be used in one target. Fix this merging two commands into one function. Fixes: 7ac8707 ("x86/vdso: Switch to generic vDSO implementation") Signed-off-by: Naohiro Aota <[email protected]> Signed-off-by: Thomas Gleixner <[email protected]> Tested-by: Vincenzo Frascino <[email protected]> Reviewed-by: Vincenzo Frascino <[email protected]> Reviewed-by: Masahiro Yamada <[email protected]> Link: https://lkml.kernel.org/r/[email protected] (cherry picked from commit e9a1379) Signed-off-by: Mark Salyzyn <[email protected]> Bug: 154668398 Change-Id: Icb94029fbdce1ec2308a7432ec067a8dd820a8e8
vutung2311
added a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Jun 8, 2021
…iver_skb_wq 02-22 00:12:51.066 0 0 W : [20210222_00:12:51.066158]@1 CFI failure (target: rmnet_shs_assign.cfi_jt+0x0/0x4): 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066237]@1 WARNING: CPU: 1 PID: 0 at kernel/cfi.c:31 __cfi_check_fail+0x44/0x4c 02-22 00:12:51.067 0 0 W : [20210222_00:12:51.066250]@1 Modules linked in: wcd938x_slave_dlkm(FO) stub_dlkm(FO) swr_dlkm(FO) pinctrl_wcd_dlkm(FO) snd_event_dlkm(FO) 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066301]@1 CPU: 1 PID: 0 Comm: swapper/1 Tainted: GFS W O 4.19.113-perf+ OnePlusOSS#3 02-22 00:12:51.067 0 0 W : [20210222_00:12:51.066314]@1 Hardware name: Qualcomm Technologies, Inc. kona MTP dvt/mp 19811 14 15 52 53 (DT) 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066328]@1 pstate: 60400005 (nZCv daif +PAN -UAO) 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066342]@1 pc: __cfi_check_fail+0x44/0x4c 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066355]@1 lr: __cfi_check_fail+0x44/0x4c 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066364]@1 sp: ffffff801000b9f0 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066375]@1 x29: ffffff801000b9f0 x28: 0000000000000034 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066390]@1 x27: ffffffe06faffb80 x26: ffffff801000bb48 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066403]@1 x25: ffffffe06faffb90 x24: cccccccccccccccd 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066416]@1 x23: ffffff9f50e8e000 x22: 0000000000000001 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066430]@1 x21: 29bb8dd6c0dc5b44 x20: ffffff9f53f28f30 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066443]@1 x19: ffffff9f5280c5c4 x18: ffffffe0bfa12288 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066456]@1 x17: 00000000000afa10 x16: 000000000003890a 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066468]@1 x15: 0000000000000004 x14: 0000000000000064 02-22 00:12:51.067 0 0 W [20210222_00:12:51.066480]@1 x13: 00000000000af9d8 x12: 0000000000000000 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066492]@1 x11: 0000000000000000 x10: ffffffffffffffff 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066505]@1 x9: cf4e998a6e05ca00 x8 : cf4e998a6e05ca00 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066517]@1 x7: 0000000000000000 x6 : ffffffe0bfac1c57 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066529]@1 x5: 0000000000000000 x4 : 0000000000000000 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066541]@1 x3: 000000000000003a x2 : 0000000000000001 02-22 00:12:51.068 0 0 W [20210222_00:12:51.066553]@1 x1: 0000000000000000 x0 : 0000000000000053 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066570]@1 Call trace: 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066595]@1 __cfi_check_fail+0x44/0x4c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066622]@1 __cfi_check+0x42bcc/0x48580 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066651]@1 rmnet_deliver_skb+0x9c/0x314 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066672]@1 rmnet_frag_deliver+0x634/0x780 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066692]@1 rmnet_frag_ingress_handler+0x30c/0x3f8 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066708]@1 rmnet_rx_handler+0xe0/0x29c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066741]@1 __netif_receive_skb_core+0x478/0xdfc 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066756]@1 __netif_receive_skb+0x44/0x174 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066778]@1 process_backlog+0x120/0x2a8 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066792]@1 napi_poll+0x94/0x328 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066808]@1 net_rx_action+0xac/0x248 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066829]@1 __do_softirq+0x114/0x450 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066855]@1 irq_exit+0xc0/0xc4 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066881]@1 handle_IPI+0x104/0x39c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066899]@1 gic_handle_irq+0x90/0x16c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066916]@1 el1_irq+0xe8/0x190 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066948]@1 lpm_cpuidle_enter+0x228/0x400 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066967]@1 cpuidle_enter_state+0x120/0x410 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.066997]@1 do_idle.llvm.9417574252142394113+0x1b4/0x28c 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.067011]@1 cpu_startup_entry+0x20/0x24 02-22 00:12:51.068 0 0 W : [20210222_00:12:51.067026]@1 __cpu_disable+0x0/0xe0
vutung2311
added a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Jun 28, 2021
11-30 13:22:03.560 0 0 E : @3 ================================================================== 11-30 13:22:03.560 0 0 E @3 BUG : KASAN: slab-out-of-bounds in strlcpy+0x30/0x88 11-30 13:22:03.561 0 0 E : @3 Read of size 1 at addr fffffff70e075500 by task kworker/u16:7/274 11-30 13:22:03.561 0 0 E : @3 11-30 13:22:03.561 0 0 W @3 CPU : 3 PID: 274 Comm: kworker/u16:7 Tainted: G S 4.19.110-perf+ OnePlusOSS#3 11-30 13:22:03.561 0 0 W : @3 Hardware name: Qualcomm Technologies, Inc. kona MTP dvt/mp 19811 14 15 52 53 (DT) 11-30 13:22:03.561 0 0 W @3 Workqueue: events_unbound async_run_entry_fn 11-30 13:22:03.561 0 0 W : @3 Call trace: 11-30 13:22:03.561 0 0 W : @3 dump_backtrace+0x0/0x2d8 11-30 13:22:03.561 0 0 W : @3 show_stack+0x14/0x1c 11-30 13:22:03.561 0 0 W : @3 0xffffff904ba81184 11-30 13:22:03.561 0 0 W : @3 print_address_description+0x80/0x324 11-30 13:22:03.561 0 0 W : @3 __kasan_report+0x1ac/0x1e0 11-30 13:22:03.561 0 0 W : @3 kasan_report+0x10/0x18 11-30 13:22:03.561 0 0 W : @3 __asan_load1+0x50/0x58 11-30 13:22:03.561 0 0 W : @3 strlcpy+0x30/0x88 11-30 13:22:03.561 0 0 W : @3 ufs_fill_info+0x140/0x51c 11-30 13:22:03.561 0 0 W : @3 ufshcd_probe_hba+0x1b50/0x3534 11-30 13:22:03.561 0 0 W : @3 ufshcd_async_scan+0x2c/0x40 11-30 13:22:03.561 0 0 W : @3 async_run_entry_fn+0x80/0x24c 11-30 13:22:03.561 0 0 W : @3 process_one_work+0x3e8/0x84c 11-30 13:22:03.561 0 0 W : @3 worker_thread+0x500/0x978 11-30 13:22:03.561 0 0 W : @3 kthread+0x188/0x1a0 11-30 13:22:03.561 0 0 W : @3 ret_from_fork+0x10/0x18 11-30 13:22:03.561 0 0 E : @3 11-30 13:22:03.561 0 0 E : @3 Allocated by task 274: 11-30 13:22:03.561 0 0 W : @3 __kasan_kmalloc+0x10c/0x1e8 11-30 13:22:03.561 0 0 D : @5 pci_bus 0000:01: busn_res: [bus 01-ff] end is updated to 01 11-30 13:22:03.561 0 0 W : @3 kasan_slab_alloc+0x14/0x1c 11-30 13:22:03.561 0 0 W : @3 __kmalloc_track_caller+0x1bc/0x358 11-30 13:22:03.561 0 0 W : @3 kmemdup+0x2c/0x58 11-30 13:22:03.561 0 0 W : @3 scsi_probe_and_add_lun+0xd24/0x1ab0 11-30 13:22:03.561 0 0 D : @5 pci 0000:00:00.0: bridge window [io 0x1000-0x0fff] to [bus 01] add_size 1000 11-30 13:22:03.561 0 0 W : @3 __scsi_add_device+0x134/0x214 11-30 13:22:03.561 0 0 D : @5 pci 0000:00:00.0: bridge window [mem 0x00100000-0x000fffff 64bit pref] to [bus 01] add_size 200000 add_align 100000 11-30 13:22:03.561 0 0 W : @3 ufshcd_probe_hba+0x2c48/0x3534 11-30 13:22:03.561 0 0 D : @5 pci 0000:00:00.0: bridge window [mem 0x00100000-0x001fffff] to [bus 01] add_size 200000 add_align 100000 11-30 13:22:03.561 0 0 W : @3 ufshcd_async_scan+0x2c/0x40 11-30 13:22:03.561 0 0 W : @3 async_run_entry_fn+0x80/0x24c 11-30 13:22:03.561 0 0 W : @3 process_one_work+0x3e8/0x84c 11-30 13:22:03.561 0 0 W : @3 worker_thread+0x500/0x978 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: BAR 8: assigned [mem 0x60300000-0x605fffff] 11-30 13:22:03.561 0 0 W : @3 kthread+0x188/0x1a0 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: BAR 9: assigned [mem 0x60600000-0x607fffff 64bit pref] 11-30 13:22:03.561 0 0 W : @3 ret_from_fork+0x10/0x18 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: BAR 0: assigned [mem 0x60800000-0x60800fff 64bit] 11-30 13:22:03.561 0 0 E : @3 11-30 13:22:03.561 0 0 E : @3 Freed by task 0: 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: BAR 7: assigned [io 0x1000-0x1fff] 11-30 13:22:03.561 0 0 E : @3 (stack is not available) 11-30 13:22:03.561 0 0 I : @5 pci 0000:01:00.0: BAR 0: assigned [mem 0x60300000-0x603fffff 64bit] 11-30 13:22:03.561 0 0 E : @3 11-30 13:22:03.561 0 0 E : @3 The buggy address belongs to the object at fffffff70e075480 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: PCI bridge to [bus 01] 11-30 13:22:03.561 0 0 E : @3 The buggy address is located 0 bytes to the right of 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: bridge window [io 0x1000-0x1fff] 11-30 13:22:03.561 0 0 I @7 SMB2 : smb5_parse_dt_misc: T1:120, T2:350, T3:400, fcc1:1000, fcc1:1050, cut1:850, cut2:900,full:4480 11-30 13:22:03.561 0 0 E @7 SMB2 : read_array_data_from_node: Count dash-temp-ibatmax failed, rc=-22 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: bridge window [mem 0x60300000-0x605fffff] 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: bridge window [mem 0x60600000-0x607fffff 64bit pref] 11-30 13:22:03.561 0 0 E : @3 The buggy address belongs to the page: 11-30 13:22:03.561 0 0 E @7 SMB2 : read_array_data_from_node: Count dash-temp-ibatmax-thr-ma failed, rc=-22 11-30 13:22:03.561 0 0 F @3 page : ffffffbf13462440 count:1 mapcount:0 mapping:fffffff5ffc28400 index:0x0 compound_mapcount: 0 11-30 13:22:03.561 0 0 F @3 flags: 0x10200(slab|head) 11-30 13:22:03.561 0 0 E @7 SMB2 : read_array_data_from_node: Count v9a2-temp-ibatmax failed, rc=-22 11-30 13:22:03.561 0 0 F @3 raw : 0000000000010200 ffffffbf13462588 ffffffbf13465008 fffffff5ffc28400 11-30 13:22:03.561 0 0 E @7 SMB2 : read_array_data_from_node: Count v9a2-temp-ibatmax_thr_ma failed, rc=-22 11-30 13:22:03.561 0 0 E @7 SMB2 : read_array_data_from_node: Count pd-temp-ibatmax failed, rc=-22 11-30 13:22:03.561 0 0 F @3 raw : 0000000000000000 0000000000190019 00000001ffffffff 0000000000000000 11-30 13:22:03.562 0 0 E @7 SMB2 : read_array_data_from_node: Count pd-temp-ibatmax_thr_ma failed, rc=-22 11-30 13:22:03.562 0 0 F @3 raw : 0000000000000000 0000000000000000 11-30 13:22:03.562 0 0 F : @3 page dumped because: kasan: bad access detected 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: sw_iterm_ma=235,check_batt_full_by_sw=1 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: OTG_ICL:enable:1,CapThr:15,LowThr:1000000,NorThr:1500000 11-30 13:22:03.562 0 0 E : @3 Memory state around the buggy address: 11-30 13:22:03.562 0 0 I : @5 pci-msm-rc 0000:00:00.0: Linked as a consumer to 15000000.apps-smmu 11-30 13:22:03.562 0 0 E @3 fffffff70e075400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 11-30 13:22:03.562 0 0 E @3 fffffff70e075480: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: T0=-20, T1=0, T2=50, T3=120, T4=160, T5=450, T6=500 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: BATT_TEMP_LITTLE_COLD=350, 3975, 3675 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: BATT_TEMP_COOL=2000, 4435, 4235 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: BATT_TEMP_LITTLE_COOL=2000, 4435, 4335 11-30 13:22:03.562 0 0 E @3 >fffffff70e075500: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: BATT_TEMP_PRE_NORMAL=2000, 4435, 4335 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: BATT_TEMP_NORMAL=2000, 4435, 4335 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: BATT_TEMP_WARM=1200, 4130, 4030 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: cutoff_volt_with_charger=3250, disable-pd=0 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: fv_offset_voltage_mv=50 11-30 13:22:03.562 0 0 E : @3 ^ 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: normal_check_interval_period=300 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: fast_check_interval_period=50 11-30 13:22:03.562 0 0 E @3 fffffff70e075580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: fast_check_threshold_temp=33 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: high_temp_short_check_timeout=1500 11-30 13:22:03.562 0 0 E @3 fffffff70e075600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: first_protect_connecter_temp=60 11-30 13:22:03.562 0 0 E : @3 ==================================================================
vutung2311
added a commit
to vutung2311/android_kernel_oneplus_sm8250
that referenced
this issue
Jul 3, 2021
11-30 13:22:03.560 0 0 E : @3 ================================================================== 11-30 13:22:03.560 0 0 E @3 BUG : KASAN: slab-out-of-bounds in strlcpy+0x30/0x88 11-30 13:22:03.561 0 0 E : @3 Read of size 1 at addr fffffff70e075500 by task kworker/u16:7/274 11-30 13:22:03.561 0 0 E : @3 11-30 13:22:03.561 0 0 W @3 CPU : 3 PID: 274 Comm: kworker/u16:7 Tainted: G S 4.19.110-perf+ OnePlusOSS#3 11-30 13:22:03.561 0 0 W : @3 Hardware name: Qualcomm Technologies, Inc. kona MTP dvt/mp 19811 14 15 52 53 (DT) 11-30 13:22:03.561 0 0 W @3 Workqueue: events_unbound async_run_entry_fn 11-30 13:22:03.561 0 0 W : @3 Call trace: 11-30 13:22:03.561 0 0 W : @3 dump_backtrace+0x0/0x2d8 11-30 13:22:03.561 0 0 W : @3 show_stack+0x14/0x1c 11-30 13:22:03.561 0 0 W : @3 0xffffff904ba81184 11-30 13:22:03.561 0 0 W : @3 print_address_description+0x80/0x324 11-30 13:22:03.561 0 0 W : @3 __kasan_report+0x1ac/0x1e0 11-30 13:22:03.561 0 0 W : @3 kasan_report+0x10/0x18 11-30 13:22:03.561 0 0 W : @3 __asan_load1+0x50/0x58 11-30 13:22:03.561 0 0 W : @3 strlcpy+0x30/0x88 11-30 13:22:03.561 0 0 W : @3 ufs_fill_info+0x140/0x51c 11-30 13:22:03.561 0 0 W : @3 ufshcd_probe_hba+0x1b50/0x3534 11-30 13:22:03.561 0 0 W : @3 ufshcd_async_scan+0x2c/0x40 11-30 13:22:03.561 0 0 W : @3 async_run_entry_fn+0x80/0x24c 11-30 13:22:03.561 0 0 W : @3 process_one_work+0x3e8/0x84c 11-30 13:22:03.561 0 0 W : @3 worker_thread+0x500/0x978 11-30 13:22:03.561 0 0 W : @3 kthread+0x188/0x1a0 11-30 13:22:03.561 0 0 W : @3 ret_from_fork+0x10/0x18 11-30 13:22:03.561 0 0 E : @3 11-30 13:22:03.561 0 0 E : @3 Allocated by task 274: 11-30 13:22:03.561 0 0 W : @3 __kasan_kmalloc+0x10c/0x1e8 11-30 13:22:03.561 0 0 D : @5 pci_bus 0000:01: busn_res: [bus 01-ff] end is updated to 01 11-30 13:22:03.561 0 0 W : @3 kasan_slab_alloc+0x14/0x1c 11-30 13:22:03.561 0 0 W : @3 __kmalloc_track_caller+0x1bc/0x358 11-30 13:22:03.561 0 0 W : @3 kmemdup+0x2c/0x58 11-30 13:22:03.561 0 0 W : @3 scsi_probe_and_add_lun+0xd24/0x1ab0 11-30 13:22:03.561 0 0 D : @5 pci 0000:00:00.0: bridge window [io 0x1000-0x0fff] to [bus 01] add_size 1000 11-30 13:22:03.561 0 0 W : @3 __scsi_add_device+0x134/0x214 11-30 13:22:03.561 0 0 D : @5 pci 0000:00:00.0: bridge window [mem 0x00100000-0x000fffff 64bit pref] to [bus 01] add_size 200000 add_align 100000 11-30 13:22:03.561 0 0 W : @3 ufshcd_probe_hba+0x2c48/0x3534 11-30 13:22:03.561 0 0 D : @5 pci 0000:00:00.0: bridge window [mem 0x00100000-0x001fffff] to [bus 01] add_size 200000 add_align 100000 11-30 13:22:03.561 0 0 W : @3 ufshcd_async_scan+0x2c/0x40 11-30 13:22:03.561 0 0 W : @3 async_run_entry_fn+0x80/0x24c 11-30 13:22:03.561 0 0 W : @3 process_one_work+0x3e8/0x84c 11-30 13:22:03.561 0 0 W : @3 worker_thread+0x500/0x978 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: BAR 8: assigned [mem 0x60300000-0x605fffff] 11-30 13:22:03.561 0 0 W : @3 kthread+0x188/0x1a0 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: BAR 9: assigned [mem 0x60600000-0x607fffff 64bit pref] 11-30 13:22:03.561 0 0 W : @3 ret_from_fork+0x10/0x18 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: BAR 0: assigned [mem 0x60800000-0x60800fff 64bit] 11-30 13:22:03.561 0 0 E : @3 11-30 13:22:03.561 0 0 E : @3 Freed by task 0: 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: BAR 7: assigned [io 0x1000-0x1fff] 11-30 13:22:03.561 0 0 E : @3 (stack is not available) 11-30 13:22:03.561 0 0 I : @5 pci 0000:01:00.0: BAR 0: assigned [mem 0x60300000-0x603fffff 64bit] 11-30 13:22:03.561 0 0 E : @3 11-30 13:22:03.561 0 0 E : @3 The buggy address belongs to the object at fffffff70e075480 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: PCI bridge to [bus 01] 11-30 13:22:03.561 0 0 E : @3 The buggy address is located 0 bytes to the right of 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: bridge window [io 0x1000-0x1fff] 11-30 13:22:03.561 0 0 I @7 SMB2 : smb5_parse_dt_misc: T1:120, T2:350, T3:400, fcc1:1000, fcc1:1050, cut1:850, cut2:900,full:4480 11-30 13:22:03.561 0 0 E @7 SMB2 : read_array_data_from_node: Count dash-temp-ibatmax failed, rc=-22 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: bridge window [mem 0x60300000-0x605fffff] 11-30 13:22:03.561 0 0 I : @5 pci 0000:00:00.0: bridge window [mem 0x60600000-0x607fffff 64bit pref] 11-30 13:22:03.561 0 0 E : @3 The buggy address belongs to the page: 11-30 13:22:03.561 0 0 E @7 SMB2 : read_array_data_from_node: Count dash-temp-ibatmax-thr-ma failed, rc=-22 11-30 13:22:03.561 0 0 F @3 page : ffffffbf13462440 count:1 mapcount:0 mapping:fffffff5ffc28400 index:0x0 compound_mapcount: 0 11-30 13:22:03.561 0 0 F @3 flags: 0x10200(slab|head) 11-30 13:22:03.561 0 0 E @7 SMB2 : read_array_data_from_node: Count v9a2-temp-ibatmax failed, rc=-22 11-30 13:22:03.561 0 0 F @3 raw : 0000000000010200 ffffffbf13462588 ffffffbf13465008 fffffff5ffc28400 11-30 13:22:03.561 0 0 E @7 SMB2 : read_array_data_from_node: Count v9a2-temp-ibatmax_thr_ma failed, rc=-22 11-30 13:22:03.561 0 0 E @7 SMB2 : read_array_data_from_node: Count pd-temp-ibatmax failed, rc=-22 11-30 13:22:03.561 0 0 F @3 raw : 0000000000000000 0000000000190019 00000001ffffffff 0000000000000000 11-30 13:22:03.562 0 0 E @7 SMB2 : read_array_data_from_node: Count pd-temp-ibatmax_thr_ma failed, rc=-22 11-30 13:22:03.562 0 0 F @3 raw : 0000000000000000 0000000000000000 11-30 13:22:03.562 0 0 F : @3 page dumped because: kasan: bad access detected 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: sw_iterm_ma=235,check_batt_full_by_sw=1 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: OTG_ICL:enable:1,CapThr:15,LowThr:1000000,NorThr:1500000 11-30 13:22:03.562 0 0 E : @3 Memory state around the buggy address: 11-30 13:22:03.562 0 0 I : @5 pci-msm-rc 0000:00:00.0: Linked as a consumer to 15000000.apps-smmu 11-30 13:22:03.562 0 0 E @3 fffffff70e075400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 11-30 13:22:03.562 0 0 E @3 fffffff70e075480: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: T0=-20, T1=0, T2=50, T3=120, T4=160, T5=450, T6=500 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: BATT_TEMP_LITTLE_COLD=350, 3975, 3675 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: BATT_TEMP_COOL=2000, 4435, 4235 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: BATT_TEMP_LITTLE_COOL=2000, 4435, 4335 11-30 13:22:03.562 0 0 E @3 >fffffff70e075500: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: BATT_TEMP_PRE_NORMAL=2000, 4435, 4335 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: BATT_TEMP_NORMAL=2000, 4435, 4335 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: BATT_TEMP_WARM=1200, 4130, 4030 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: cutoff_volt_with_charger=3250, disable-pd=0 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: fv_offset_voltage_mv=50 11-30 13:22:03.562 0 0 E : @3 ^ 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: normal_check_interval_period=300 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: fast_check_interval_period=50 11-30 13:22:03.562 0 0 E @3 fffffff70e075580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: fast_check_threshold_temp=33 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: high_temp_short_check_timeout=1500 11-30 13:22:03.562 0 0 E @3 fffffff70e075600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 11-30 13:22:03.562 0 0 I @7 SMB2 : smb5_parse_dt_misc: first_protect_connecter_temp=60 11-30 13:22:03.562 0 0 E : @3 ==================================================================
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Apr 5, 2022
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result OnePlusOSS#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result OnePlusOSS#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result OnePlusOSS#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result OnePlusOSS#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Apr 5, 2022
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result OnePlusOSS#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result OnePlusOSS#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result OnePlusOSS#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result OnePlusOSS#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Apr 8, 2022
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result OnePlusOSS#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result OnePlusOSS#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result OnePlusOSS#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result OnePlusOSS#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Apr 11, 2022
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result OnePlusOSS#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result OnePlusOSS#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result OnePlusOSS#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result OnePlusOSS#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Apr 22, 2022
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result OnePlusOSS#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result OnePlusOSS#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result OnePlusOSS#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result OnePlusOSS#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Apr 22, 2022
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result OnePlusOSS#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result OnePlusOSS#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result OnePlusOSS#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result OnePlusOSS#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Apr 24, 2022
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result OnePlusOSS#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result OnePlusOSS#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result OnePlusOSS#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result OnePlusOSS#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
May 12, 2022
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result OnePlusOSS#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result OnePlusOSS#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result OnePlusOSS#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result OnePlusOSS#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
May 27, 2022
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result OnePlusOSS#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result OnePlusOSS#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result OnePlusOSS#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result OnePlusOSS#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
May 27, 2022
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result OnePlusOSS#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result OnePlusOSS#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result OnePlusOSS#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result OnePlusOSS#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Jul 12, 2022
[ Upstream commit 1b710b1 ] Sergey didn't like the locking order, uart_port->lock -> tty_port->lock uart_write (uart_port->lock) __uart_start pl011_start_tx pl011_tx_chars uart_write_wakeup tty_port_tty_wakeup tty_port_default tty_port_tty_get (tty_port->lock) but those code is so old, and I have no clue how to de-couple it after checking other locks in the splat. There is an onging effort to make all printk() as deferred, so until that happens, workaround it for now as a short-term fix. LTP: starting iogen01 (export LTPROOT; rwtest -N iogen01 -i 120s -s read,write -Da -Dv -n 2 500b:$TMPDIR/doio.f1.$$ 1000b:$TMPDIR/doio.f2.$$) WARNING: possible circular locking dependency detected ------------------------------------------------------ doio/49441 is trying to acquire lock: ffff008b7cff7290 (&(&zone->lock)->rlock){..-.}, at: rmqueue+0x138/0x2050 but task is already holding lock: 60ff000822352818 (&pool->lock/1){-.-.}, at: start_flush_work+0xd8/0x3f0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> OnePlusOSS#4 (&pool->lock/1){-.-.}: lock_acquire+0x320/0x360 _raw_spin_lock+0x64/0x80 __queue_work+0x4b4/0xa10 queue_work_on+0xac/0x11c tty_schedule_flip+0x84/0xbc tty_flip_buffer_push+0x1c/0x28 pty_write+0x98/0xd0 n_tty_write+0x450/0x60c tty_write+0x338/0x474 __vfs_write+0x88/0x214 vfs_write+0x12c/0x1a4 redirected_tty_write+0x90/0xdc do_loop_readv_writev+0x140/0x180 do_iter_write+0xe0/0x10c vfs_writev+0x134/0x1cc do_writev+0xbc/0x130 __arm64_sys_writev+0x58/0x8c el0_svc_handler+0x170/0x240 el0_sync_handler+0x150/0x250 el0_sync+0x164/0x180 -> OnePlusOSS#3 (&(&port->lock)->rlock){-.-.}: lock_acquire+0x320/0x360 _raw_spin_lock_irqsave+0x7c/0x9c tty_port_tty_get+0x24/0x60 tty_port_default_wakeup+0x1c/0x3c tty_port_tty_wakeup+0x34/0x40 uart_write_wakeup+0x28/0x44 pl011_tx_chars+0x1b8/0x270 pl011_start_tx+0x24/0x70 __uart_start+0x5c/0x68 uart_write+0x164/0x1c8 do_output_char+0x33c/0x348 n_tty_write+0x4bc/0x60c tty_write+0x338/0x474 redirected_tty_write+0xc0/0xdc do_loop_readv_writev+0x140/0x180 do_iter_write+0xe0/0x10c vfs_writev+0x134/0x1cc do_writev+0xbc/0x130 __arm64_sys_writev+0x58/0x8c el0_svc_handler+0x170/0x240 el0_sync_handler+0x150/0x250 el0_sync+0x164/0x180 -> OnePlusOSS#2 (&port_lock_key){-.-.}: lock_acquire+0x320/0x360 _raw_spin_lock+0x64/0x80 pl011_console_write+0xec/0x2cc console_unlock+0x794/0x96c vprintk_emit+0x260/0x31c vprintk_default+0x54/0x7c vprintk_func+0x218/0x254 printk+0x7c/0xa4 register_console+0x734/0x7b0 uart_add_one_port+0x734/0x834 pl011_register_port+0x6c/0xac sbsa_uart_probe+0x234/0x2ec platform_drv_probe+0xd4/0x124 really_probe+0x250/0x71c driver_probe_device+0xb4/0x200 __device_attach_driver+0xd8/0x188 bus_for_each_drv+0xbc/0x110 __device_attach+0x120/0x220 device_initial_probe+0x20/0x2c bus_probe_device+0x54/0x100 device_add+0xae8/0xc2c platform_device_add+0x278/0x3b8 platform_device_register_full+0x238/0x2ac acpi_create_platform_device+0x2dc/0x3a8 acpi_bus_attach+0x390/0x3cc acpi_bus_attach+0x108/0x3cc acpi_bus_attach+0x108/0x3cc acpi_bus_attach+0x108/0x3cc acpi_bus_scan+0x7c/0xb0 acpi_scan_init+0xe4/0x304 acpi_init+0x100/0x114 do_one_initcall+0x348/0x6a0 do_initcall_level+0x190/0x1fc do_basic_setup+0x34/0x4c kernel_init_freeable+0x19c/0x260 kernel_init+0x18/0x338 ret_from_fork+0x10/0x18 -> OnePlusOSS#1 (console_owner){-...}: lock_acquire+0x320/0x360 console_lock_spinning_enable+0x6c/0x7c console_unlock+0x4f8/0x96c vprintk_emit+0x260/0x31c vprintk_default+0x54/0x7c vprintk_func+0x218/0x254 printk+0x7c/0xa4 get_random_u64+0x1c4/0x1dc shuffle_pick_tail+0x40/0xac __free_one_page+0x424/0x710 free_one_page+0x70/0x120 __free_pages_ok+0x61c/0xa94 __free_pages_core+0x1bc/0x294 memblock_free_pages+0x38/0x48 __free_pages_memory+0xcc/0xfc __free_memory_core+0x70/0x78 free_low_memory_core_early+0x148/0x18c memblock_free_all+0x18/0x54 mem_init+0xb4/0x17c mm_init+0x14/0x38 start_kernel+0x19c/0x530 -> #0 (&(&zone->lock)->rlock){..-.}: validate_chain+0xf6c/0x2e2c __lock_acquire+0x868/0xc2c lock_acquire+0x320/0x360 _raw_spin_lock+0x64/0x80 rmqueue+0x138/0x2050 get_page_from_freelist+0x474/0x688 __alloc_pages_nodemask+0x3b4/0x18dc alloc_pages_current+0xd0/0xe0 alloc_slab_page+0x2b4/0x5e0 new_slab+0xc8/0x6bc ___slab_alloc+0x3b8/0x640 kmem_cache_alloc+0x4b4/0x588 __debug_object_init+0x778/0x8b4 debug_object_init_on_stack+0x40/0x50 start_flush_work+0x16c/0x3f0 __flush_work+0xb8/0x124 flush_work+0x20/0x30 xlog_cil_force_lsn+0x88/0x204 [xfs] xfs_log_force_lsn+0x128/0x1b8 [xfs] xfs_file_fsync+0x3c4/0x488 [xfs] vfs_fsync_range+0xb0/0xd0 generic_write_sync+0x80/0xa0 [xfs] xfs_file_buffered_aio_write+0x66c/0x6e4 [xfs] xfs_file_write_iter+0x1a0/0x218 [xfs] __vfs_write+0x1cc/0x214 vfs_write+0x12c/0x1a4 ksys_write+0xb0/0x120 __arm64_sys_write+0x54/0x88 el0_svc_handler+0x170/0x240 el0_sync_handler+0x150/0x250 el0_sync+0x164/0x180 other info that might help us debug this: Chain exists of: &(&zone->lock)->rlock --> &(&port->lock)->rlock --> &pool->lock/1 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&pool->lock/1); lock(&(&port->lock)->rlock); lock(&pool->lock/1); lock(&(&zone->lock)->rlock); *** DEADLOCK *** 4 locks held by doio/49441: #0: a0ff00886fc27408 (sb_writers#8){.+.+}, at: vfs_write+0x118/0x1a4 OnePlusOSS#1: 8fff00080810dfe0 (&xfs_nondir_ilock_class){++++}, at: xfs_ilock+0x2a8/0x300 [xfs] OnePlusOSS#2: ffff9000129f2390 (rcu_read_lock){....}, at: rcu_lock_acquire+0x8/0x38 OnePlusOSS#3: 60ff000822352818 (&pool->lock/1){-.-.}, at: start_flush_work+0xd8/0x3f0 stack backtrace: CPU: 48 PID: 49441 Comm: doio Tainted: G W Hardware name: HPE Apollo 70 /C01_APACHE_MB , BIOS L50_5.13_1.11 06/18/2019 Call trace: dump_backtrace+0x0/0x248 show_stack+0x20/0x2c dump_stack+0xe8/0x150 print_circular_bug+0x368/0x380 check_noncircular+0x28c/0x294 validate_chain+0xf6c/0x2e2c __lock_acquire+0x868/0xc2c lock_acquire+0x320/0x360 _raw_spin_lock+0x64/0x80 rmqueue+0x138/0x2050 get_page_from_freelist+0x474/0x688 __alloc_pages_nodemask+0x3b4/0x18dc alloc_pages_current+0xd0/0xe0 alloc_slab_page+0x2b4/0x5e0 new_slab+0xc8/0x6bc ___slab_alloc+0x3b8/0x640 kmem_cache_alloc+0x4b4/0x588 __debug_object_init+0x778/0x8b4 debug_object_init_on_stack+0x40/0x50 start_flush_work+0x16c/0x3f0 __flush_work+0xb8/0x124 flush_work+0x20/0x30 xlog_cil_force_lsn+0x88/0x204 [xfs] xfs_log_force_lsn+0x128/0x1b8 [xfs] xfs_file_fsync+0x3c4/0x488 [xfs] vfs_fsync_range+0xb0/0xd0 generic_write_sync+0x80/0xa0 [xfs] xfs_file_buffered_aio_write+0x66c/0x6e4 [xfs] xfs_file_write_iter+0x1a0/0x218 [xfs] __vfs_write+0x1cc/0x214 vfs_write+0x12c/0x1a4 ksys_write+0xb0/0x120 __arm64_sys_write+0x54/0x88 el0_svc_handler+0x170/0x240 el0_sync_handler+0x150/0x250 el0_sync+0x164/0x180 Reviewed-by: Sergey Senozhatsky <[email protected]> Signed-off-by: Qian Cai <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Theodore Ts'o <[email protected]> Signed-off-by: Sasha Levin <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Jul 25, 2022
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result OnePlusOSS#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result OnePlusOSS#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result OnePlusOSS#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result OnePlusOSS#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Aug 7, 2022
…for migration Each cset (css_set) is pinned by its tasks. When we're moving tasks around across csets for a migration, we need to hold the source and destination csets to ensure that they don't go away while we're moving tasks about. This is done by linking cset->mg_preload_node on either the mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the same cset->mg_preload_node for both the src and dst lists was deemed okay as a cset can't be both the source and destination at the same time. Unfortunately, this overloading becomes problematic when multiple tasks are involved in a migration and some of them are identity noop migrations while others are actually moving across cgroups. For example, this can happen with the following sequence on cgroup1: OnePlusOSS#1> mkdir -p /sys/fs/cgroup/misc/a/b OnePlusOSS#2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs OnePlusOSS#3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS & OnePlusOSS#4> PID=$! OnePlusOSS#5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks OnePlusOSS#6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs the process including the group leader back into a. In this final migration, non-leader threads would be doing identity migration while the group leader is doing an actual one. After OnePlusOSS#3, let's say the whole process was in cset A, and that after OnePlusOSS#4, the leader moves to cset B. Then, during OnePlusOSS#6, the following happens: 1. cgroup_migrate_add_src() is called on B for the leader. 2. cgroup_migrate_add_src() is called on A for the other threads. 3. cgroup_migrate_prepare_dst() is called. It scans the src list. 4. It notices that B wants to migrate to A, so it tries to A to the dst list but realizes that its ->mg_preload_node is already busy. 5. and then it notices A wants to migrate to A as it's an identity migration, it culls it by list_del_init()'ing its ->mg_preload_node and putting references accordingly. 6. The rest of migration takes place with B on the src list but nothing on the dst list. This means that A isn't held while migration is in progress. If all tasks leave A before the migration finishes and the incoming task pins it, the cset will be destroyed leading to use-after-free. This is caused by overloading cset->mg_preload_node for both src and dst preload lists. We wanted to exclude the cset from the src list but ended up inadvertently excluding it from the dst list too. This patch fixes the issue by separating out cset->mg_preload_node into ->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst preloadings don't interfere with each other. Signed-off-by: Tejun Heo <[email protected]> Reported-by: Mukesh Ojha <[email protected]> Reported-by: shisiyuan <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Link: https://www.spinics.net/lists/cgroups/msg33313.html Fixes: f817de9 ("cgroup: prepare migration path for unified hierarchy") Cc: [email protected] # v3.16+ (cherry picked from commit 07fd5b6cdf3cc30bfde8fe0f644771688be04447 https://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup.git for-5.19-fixes) Bug: 235577024 Change-Id: Ieaf1c0c8fc23753570897fd6e48a54335ab939ce Signed-off-by: Steve Muckle <[email protected]> Git-commit: d1faa010ca160216a17435b81c642daf08ecbcbd Git-repo: https://android.googlesource.com/kernel/common/ Signed-off-by: Srinivasarao Pathipati <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Aug 7, 2022
…tion commit 07fd5b6cdf3cc30bfde8fe0f644771688be04447 upstream. Each cset (css_set) is pinned by its tasks. When we're moving tasks around across csets for a migration, we need to hold the source and destination csets to ensure that they don't go away while we're moving tasks about. This is done by linking cset->mg_preload_node on either the mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the same cset->mg_preload_node for both the src and dst lists was deemed okay as a cset can't be both the source and destination at the same time. Unfortunately, this overloading becomes problematic when multiple tasks are involved in a migration and some of them are identity noop migrations while others are actually moving across cgroups. For example, this can happen with the following sequence on cgroup1: OnePlusOSS#1> mkdir -p /sys/fs/cgroup/misc/a/b OnePlusOSS#2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs OnePlusOSS#3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS & OnePlusOSS#4> PID=$! OnePlusOSS#5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks OnePlusOSS#6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs the process including the group leader back into a. In this final migration, non-leader threads would be doing identity migration while the group leader is doing an actual one. After OnePlusOSS#3, let's say the whole process was in cset A, and that after OnePlusOSS#4, the leader moves to cset B. Then, during OnePlusOSS#6, the following happens: 1. cgroup_migrate_add_src() is called on B for the leader. 2. cgroup_migrate_add_src() is called on A for the other threads. 3. cgroup_migrate_prepare_dst() is called. It scans the src list. 4. It notices that B wants to migrate to A, so it tries to A to the dst list but realizes that its ->mg_preload_node is already busy. 5. and then it notices A wants to migrate to A as it's an identity migration, it culls it by list_del_init()'ing its ->mg_preload_node and putting references accordingly. 6. The rest of migration takes place with B on the src list but nothing on the dst list. This means that A isn't held while migration is in progress. If all tasks leave A before the migration finishes and the incoming task pins it, the cset will be destroyed leading to use-after-free. This is caused by overloading cset->mg_preload_node for both src and dst preload lists. We wanted to exclude the cset from the src list but ended up inadvertently excluding it from the dst list too. This patch fixes the issue by separating out cset->mg_preload_node into ->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst preloadings don't interfere with each other. Signed-off-by: Tejun Heo <[email protected]> Reported-by: Mukesh Ojha <[email protected]> Reported-by: shisiyuan <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Link: https://www.spinics.net/lists/cgroups/msg33313.html Fixes: f817de9 ("cgroup: prepare migration path for unified hierarchy") Cc: [email protected] # v3.16+ Signed-off-by: Greg Kroah-Hartman <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Aug 7, 2022
In 2019, Sergey fixed a lockdep splat with 15341b1 ("char/random: silence a lockdep splat with printk()"), but that got reverted soon after from 4.19 because back then it apparently caused various problems. But the issue it was fixing is still there, and more generally, many patches turning printk() into printk_deferred() have landed since, making me suspect it's okay to try this out again. This should fix the following deadlock found by the kernel test robot: [ 18.287691] WARNING: possible circular locking dependency detected [ 18.287692] 4.19.248-00165-g3d1f971aa81f OnePlusOSS#1 Not tainted [ 18.287693] ------------------------------------------------------ [ 18.287712] stop/202 is trying to acquire lock: [ 18.287713] (ptrval) (console_owner){..-.}, at: console_unlock (??:?) [ 18.287717] [ 18.287718] but task is already holding lock: [ 18.287718] (ptrval) (&(&port->lock)->rlock){-...}, at: pty_write (pty.c:?) [ 18.287722] [ 18.287722] which lock already depends on the new lock. [ 18.287723] [ 18.287724] [ 18.287725] the existing dependency chain (in reverse order) is: [ 18.287725] [ 18.287726] -> OnePlusOSS#2 (&(&port->lock)->rlock){-...}: [ 18.287729] validate_chain+0x84a/0xe00 [ 18.287729] __lock_acquire (lockdep.c:?) [ 18.287730] lock_acquire (??:?) [ 18.287731] _raw_spin_lock_irqsave (??:?) [ 18.287732] tty_port_tty_get (??:?) [ 18.287733] tty_port_default_wakeup (tty_port.c:?) [ 18.287734] tty_port_tty_wakeup (??:?) [ 18.287734] uart_write_wakeup (??:?) [ 18.287735] serial8250_tx_chars (??:?) [ 18.287736] serial8250_handle_irq (??:?) [ 18.287737] serial8250_default_handle_irq (8250_port.c:?) [ 18.287738] serial8250_interrupt (8250_core.c:?) [ 18.287738] __handle_irq_event_percpu (??:?) [ 18.287739] handle_irq_event_percpu (??:?) [ 18.287740] handle_irq_event (??:?) [ 18.287741] handle_edge_irq (??:?) [ 18.287742] handle_irq (??:?) [ 18.287742] do_IRQ (??:?) [ 18.287743] common_interrupt (entry_32.o:?) [ 18.287744] _raw_spin_unlock_irqrestore (??:?) [ 18.287745] uart_write (serial_core.c:?) [ 18.287746] process_output_block (n_tty.c:?) [ 18.287747] n_tty_write (n_tty.c:?) [ 18.287747] tty_write (tty_io.c:?) [ 18.287748] __vfs_write (??:?) [ 18.287749] vfs_write (??:?) [ 18.287750] ksys_write (??:?) [ 18.287750] sys_write (??:?) [ 18.287751] do_fast_syscall_32 (??:?) [ 18.287752] entry_SYSENTER_32 (??:?) [ 18.287752] [ 18.287753] -> OnePlusOSS#1 (&port_lock_key){-.-.}: [ 18.287756] [ 18.287756] -> #0 (console_owner){..-.}: [ 18.287759] check_prevs_add (lockdep.c:?) [ 18.287760] validate_chain+0x84a/0xe00 [ 18.287761] __lock_acquire (lockdep.c:?) [ 18.287761] lock_acquire (??:?) [ 18.287762] console_unlock (??:?) [ 18.287763] vprintk_emit (??:?) [ 18.287764] vprintk_default (??:?) [ 18.287764] vprintk_func (??:?) [ 18.287765] printk (??:?) [ 18.287766] get_random_u32 (??:?) [ 18.287767] shuffle_freelist (slub.c:?) [ 18.287767] allocate_slab (slub.c:?) [ 18.287768] new_slab (slub.c:?) [ 18.287769] ___slab_alloc+0x6d0/0xb20 [ 18.287770] __slab_alloc+0xd6/0x2e0 [ 18.287770] __kmalloc (??:?) [ 18.287771] tty_buffer_alloc (tty_buffer.c:?) [ 18.287772] __tty_buffer_request_room (tty_buffer.c:?) [ 18.287773] tty_insert_flip_string_fixed_flag (??:?) [ 18.287774] pty_write (pty.c:?) [ 18.287775] process_output_block (n_tty.c:?) [ 18.287776] n_tty_write (n_tty.c:?) [ 18.287777] tty_write (tty_io.c:?) [ 18.287778] __vfs_write (??:?) [ 18.287779] vfs_write (??:?) [ 18.287780] ksys_write (??:?) [ 18.287780] sys_write (??:?) [ 18.287781] do_fast_syscall_32 (??:?) [ 18.287782] entry_SYSENTER_32 (??:?) [ 18.287783] [ 18.287783] other info that might help us debug this: [ 18.287784] [ 18.287785] Chain exists of: [ 18.287785] console_owner --> &port_lock_key --> &(&port->lock)->rlock [ 18.287789] [ 18.287790] Possible unsafe locking scenario: [ 18.287790] [ 18.287791] CPU0 CPU1 [ 18.287792] ---- ---- [ 18.287792] lock(&(&port->lock)->rlock); [ 18.287794] lock(&port_lock_key); [ 18.287814] lock(&(&port->lock)->rlock); [ 18.287815] lock(console_owner); [ 18.287817] [ 18.287818] *** DEADLOCK *** [ 18.287818] [ 18.287819] 6 locks held by stop/202: [ 18.287820] #0: (ptrval) (&tty->ldisc_sem){++++}, at: ldsem_down_read (??:?) [ 18.287823] OnePlusOSS#1: (ptrval) (&tty->atomic_write_lock){+.+.}, at: tty_write_lock (tty_io.c:?) [ 18.287826] OnePlusOSS#2: (ptrval) (&o_tty->termios_rwsem/1){++++}, at: n_tty_write (n_tty.c:?) [ 18.287830] OnePlusOSS#3: (ptrval) (&ldata->output_lock){+.+.}, at: process_output_block (n_tty.c:?) [ 18.287834] OnePlusOSS#4: (ptrval) (&(&port->lock)->rlock){-...}, at: pty_write (pty.c:?) [ 18.287838] OnePlusOSS#5: (ptrval) (console_lock){+.+.}, at: console_trylock_spinning (printk.c:?) [ 18.287841] [ 18.287842] stack backtrace: [ 18.287843] CPU: 0 PID: 202 Comm: stop Not tainted 4.19.248-00165-g3d1f971aa81f OnePlusOSS#1 [ 18.287843] Call Trace: [ 18.287844] dump_stack (??:?) [ 18.287845] print_circular_bug.cold+0x78/0x8b [ 18.287846] check_prev_add+0x66a/0xd20 [ 18.287847] check_prevs_add (lockdep.c:?) [ 18.287848] validate_chain+0x84a/0xe00 [ 18.287848] __lock_acquire (lockdep.c:?) [ 18.287849] lock_acquire (??:?) [ 18.287850] ? console_unlock (??:?) [ 18.287851] console_unlock (??:?) [ 18.287851] ? console_unlock (??:?) [ 18.287852] ? native_save_fl (??:?) [ 18.287853] vprintk_emit (??:?) [ 18.287854] vprintk_default (??:?) [ 18.287855] vprintk_func (??:?) [ 18.287855] printk (??:?) [ 18.287856] get_random_u32 (??:?) [ 18.287857] ? shuffle_freelist (slub.c:?) [ 18.287858] shuffle_freelist (slub.c:?) [ 18.287858] ? page_address (??:?) [ 18.287859] allocate_slab (slub.c:?) [ 18.287860] new_slab (slub.c:?) [ 18.287861] ? pvclock_clocksource_read (??:?) [ 18.287862] ___slab_alloc+0x6d0/0xb20 [ 18.287862] ? kvm_sched_clock_read (kvmclock.c:?) [ 18.287863] ? __slab_alloc+0xbc/0x2e0 [ 18.287864] ? native_wbinvd (paravirt.c:?) [ 18.287865] __slab_alloc+0xd6/0x2e0 [ 18.287865] __kmalloc (??:?) [ 18.287866] ? __lock_acquire (lockdep.c:?) [ 18.287867] ? tty_buffer_alloc (tty_buffer.c:?) [ 18.287868] tty_buffer_alloc (tty_buffer.c:?) [ 18.287869] __tty_buffer_request_room (tty_buffer.c:?) [ 18.287869] tty_insert_flip_string_fixed_flag (??:?) [ 18.287870] pty_write (pty.c:?) [ 18.287871] process_output_block (n_tty.c:?) [ 18.287872] n_tty_write (n_tty.c:?) [ 18.287873] ? print_dl_stats (??:?) [ 18.287874] ? n_tty_ioctl (n_tty.c:?) [ 18.287874] tty_write (tty_io.c:?) [ 18.287875] ? n_tty_ioctl (n_tty.c:?) [ 18.287876] ? tty_write_unlock (tty_io.c:?) [ 18.287877] __vfs_write (??:?) [ 18.287877] vfs_write (??:?) [ 18.287878] ? __fget_light (file.c:?) [ 18.287879] ksys_write (??:?) Cc: Sergey Senozhatsky <[email protected]> Cc: Qian Cai <[email protected]> Cc: Lech Perczak <[email protected]> Cc: Greg Kroah-Hartman <[email protected]> Cc: Theodore Ts'o <[email protected]> Cc: Sasha Levin <[email protected]> Cc: Petr Mladek <[email protected]> Cc: John Ogness <[email protected]> Reported-by: kernel test robot <[email protected]> Link: https://lore.kernel.org/lkml/Ytz+lo4zRQYG3JUR@xsang-OptiPlex-9020 Signed-off-by: Jason A. Donenfeld <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Aug 22, 2022
commit 2b1299322016731d56807aa49254a5ea3080b6b3 upstream. tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as documented for RET instructions after VM exits. Mitigate it with a new one-entry RSB stuffing mechanism and a new LFENCE. == Background == Indirect Branch Restricted Speculation (IBRS) was designed to help mitigate Branch Target Injection and Speculative Store Bypass, i.e. Spectre, attacks. IBRS prevents software run in less privileged modes from affecting branch prediction in more privileged modes. IBRS requires the MSR to be written on every privilege level change. To overcome some of the performance issues of IBRS, Enhanced IBRS was introduced. eIBRS is an "always on" IBRS, in other words, just turn it on once instead of writing the MSR on every privilege level change. When eIBRS is enabled, more privileged modes should be protected from less privileged modes, including protecting VMMs from guests. == Problem == Here's a simplification of how guests are run on Linux' KVM: void run_kvm_guest(void) { // Prepare to run guest VMRESUME(); // Clean up after guest runs } The execution flow for that would look something like this to the processor: 1. Host-side: call run_kvm_guest() 2. Host-side: VMRESUME 3. Guest runs, does "CALL guest_function" 4. VM exit, host runs again 5. Host might make some "cleanup" function calls 6. Host-side: RET from run_kvm_guest() Now, when back on the host, there are a couple of possible scenarios of post-guest activity the host needs to do before executing host code: * on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not touched and Linux has to do a 32-entry stuffing. * on eIBRS hardware, VM exit with IBRS enabled, or restoring the host IBRS=1 shortly after VM exit, has a documented side effect of flushing the RSB except in this PBRSB situation where the software needs to stuff the last RSB entry "by hand". IOW, with eIBRS supported, host RET instructions should no longer be influenced by guest behavior after the host retires a single CALL instruction. However, if the RET instructions are "unbalanced" with CALLs after a VM exit as is the RET in OnePlusOSS#6, it might speculatively use the address for the instruction after the CALL in OnePlusOSS#3 as an RSB prediction. This is a problem since the (untrusted) guest controls this address. Balanced CALL/RET instruction pairs such as in step OnePlusOSS#5 are not affected. == Solution == The PBRSB issue affects a wide variety of Intel processors which support eIBRS. But not all of them need mitigation. Today, X86_FEATURE_RETPOLINE triggers an RSB filling sequence that mitigates PBRSB. Systems setting RETPOLINE need no further mitigation - i.e., eIBRS systems which enable retpoline explicitly. However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RETPOLINE and most of them need a new mitigation. Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE which triggers a lighter-weight PBRSB mitigation versus RSB Filling at vmexit. The lighter-weight mitigation performs a CALL instruction which is immediately followed by a speculative execution barrier (INT3). This steers speculative execution to the barrier -- just like a retpoline -- which ensures that speculation can never reach an unbalanced RET. Then, ensure this CALL is retired before continuing execution with an LFENCE. In other words, the window of exposure is opened at VM exit where RET behavior is troublesome. While the window is open, force RSB predictions sampling for RET targets to a dead end at the INT3. Close the window with the LFENCE. There is a subset of eIBRS systems which are not vulnerable to PBRSB. Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB. Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO. [ bp: Massage, incorporate review comments from Andy Cooper. ] [ Pawan: Update commit message to replace RSB_VMEXIT with RETPOLINE ] Signed-off-by: Daniel Sneddon <[email protected]> Co-developed-by: Pawan Gupta <[email protected]> Signed-off-by: Pawan Gupta <[email protected]> Signed-off-by: Borislav Petkov <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
andreock
referenced
this issue
in andreock/android_kernel_realme_sm8250
Aug 31, 2022
[ Upstream commit ca10845 ] While running btrfs/061, btrfs/073, btrfs/078, or btrfs/178 we hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.9.0-rc3+ #4 Not tainted ------------------------------------------------------ kswapd0/100 is trying to acquire lock: ffff96ecc22ef4a0 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x330 but task is already holding lock: ffffffff8dd74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x65/0x80 slab_pre_alloc_hook.constprop.0+0x20/0x200 kmem_cache_alloc+0x37/0x270 alloc_inode+0x82/0xb0 iget_locked+0x10d/0x2c0 kernfs_get_inode+0x1b/0x130 kernfs_get_tree+0x136/0x240 sysfs_get_tree+0x16/0x40 vfs_get_tree+0x28/0xc0 path_mount+0x434/0xc00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (kernfs_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 kernfs_add_one+0x23/0x150 kernfs_create_link+0x63/0xa0 sysfs_do_create_link_sd+0x5e/0xd0 btrfs_sysfs_add_devices_dir+0x81/0x130 btrfs_init_new_device+0x67f/0x1250 btrfs_ioctl+0x1ef/0x2e20 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 btrfs_chunk_alloc+0x125/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_insert_empty_items+0x64/0xb0 btrfs_insert_delayed_items+0x90/0x4f0 btrfs_commit_inode_delayed_items+0x93/0x140 btrfs_log_inode+0x5de/0x2020 btrfs_log_inode_parent+0x429/0xc90 btrfs_log_new_name+0x95/0x9b btrfs_rename2+0xbb9/0x1800 vfs_rename+0x64f/0x9f0 do_renameat2+0x320/0x4e0 __x64_sys_rename+0x1f/0x30 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: __lock_acquire+0x119c/0x1fc0 lock_acquire+0xa7/0x3d0 __mutex_lock+0x7e/0x7e0 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 kthread+0x138/0x160 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> kernfs_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(kernfs_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/100: #0: ffffffff8dd74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 #1: ffffffff8dd65c50 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x115/0x290 #2: ffff96ed2ade30e0 (&type->s_umount_key#36){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0 stack backtrace: CPU: 0 PID: 100 Comm: kswapd0 Not tainted 5.9.0-rc3+ #4 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb8 check_noncircular+0x12d/0x150 __lock_acquire+0x119c/0x1fc0 lock_acquire+0xa7/0x3d0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 __mutex_lock+0x7e/0x7e0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? lock_acquire+0xa7/0x3d0 ? find_held_lock+0x2b/0x80 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 ? _raw_spin_unlock_irqrestore+0x41/0x50 ? add_wait_queue_exclusive+0x70/0x70 ? balance_pgdat+0x670/0x670 kthread+0x138/0x160 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 This happens because we are holding the chunk_mutex at the time of adding in a new device. However we only need to hold the device_list_mutex, as we're going to iterate over the fs_devices devices. Move the sysfs init stuff outside of the chunk_mutex to get rid of this lockdep splat. CC: [email protected] # 4.4.x: f3cd2c5: btrfs: sysfs, rename device_link add/remove functions CC: [email protected] # 4.4.x Reported-by: David Sterba <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
andreock
referenced
this issue
in andreock/android_kernel_realme_sm8250
Aug 31, 2022
[ Upstream commit e773ca7 ] Actually, burst size is equal to '1 << desc->rqcfg.brst_size'. we should use burst size, not desc->rqcfg.brst_size. dma memcpy performance on Rockchip RV1126 @ 1512MHz A7, 1056MHz LPDDR3, 200MHz DMA: dmatest: /# echo dma0chan0 > /sys/module/dmatest/parameters/channel /# echo 4194304 > /sys/module/dmatest/parameters/test_buf_size /# echo 8 > /sys/module/dmatest/parameters/iterations /# echo y > /sys/module/dmatest/parameters/norandom /# echo y > /sys/module/dmatest/parameters/verbose /# echo 1 > /sys/module/dmatest/parameters/run dmatest: dma0chan0-copy0: result #1: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #2: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #3: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #4: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #5: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #6: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #7: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #8: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 Before: dmatest: dma0chan0-copy0: summary 8 tests, 0 failures 48 iops 200338 KB/s (0) After this patch: dmatest: dma0chan0-copy0: summary 8 tests, 0 failures 179 iops 734873 KB/s (0) After this patch and increase dma clk to 400MHz: dmatest: dma0chan0-copy0: summary 8 tests, 0 failures 259 iops 1062929 KB/s (0) Signed-off-by: Sugar Zhang <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Vinod Koul <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
andreock
referenced
this issue
in andreock/android_kernel_realme_sm8250
Aug 31, 2022
commit 190113b upstream. Prarit reported that depending on the affinity setting the ' irq $N: Affinity broken due to vector space exhaustion.' message is showing up in dmesg, but the vector space on the CPUs in the affinity mask is definitely not exhausted. Shung-Hsi provided traces and analysis which pinpoints the problem: The ordering of trying to assign an interrupt vector in assign_irq_vector_any_locked() is simply wrong if the interrupt data has a valid node assigned. It does: 1) Try the intersection of affinity mask and node mask 2) Try the node mask 3) Try the full affinity mask 4) Try the full online mask Obviously #2 and #3 are in the wrong order as the requested affinity mask has to take precedence. In the observed cases #1 failed because the affinity mask did not contain CPUs from node 0. That made it allocate a vector from node 0, thereby breaking affinity and emitting the misleading message. Revert the order of #2 and #3 so the full affinity mask without the node intersection is tried before actually affinity is broken. If no node is assigned then only the full affinity mask and if that fails the full online mask is tried. Fixes: d6ffc6a ("x86/vector: Respect affinity mask in irq descriptor") Reported-by: Prarit Bhargava <[email protected]> Reported-by: Shung-Hsi Yu <[email protected]> Signed-off-by: Thomas Gleixner <[email protected]> Tested-by: Shung-Hsi Yu <[email protected]> Cc: [email protected] Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]>
andreock
referenced
this issue
in andreock/android_kernel_realme_sm8250
Aug 31, 2022
[ Upstream commit 4a9d81caf841cd2c0ae36abec9c2963bf21d0284 ] If the elem is deleted during be iterated on it, the iteration process will fall into an endless loop. kernel: NMI watchdog: BUG: soft lockup - CPU#4 stuck for 22s! [nfsd:17137] PID: 17137 TASK: ffff8818d93c0000 CPU: 4 COMMAND: "nfsd" [exception RIP: __state_in_grace+76] RIP: ffffffffc00e817c RSP: ffff8818d3aefc98 RFLAGS: 00000246 RAX: ffff881dc0c38298 RBX: ffffffff81b03580 RCX: ffff881dc02c9f50 RDX: ffff881e3fce8500 RSI: 0000000000000001 RDI: ffffffff81b03580 RBP: ffff8818d3aefca0 R8: 0000000000000020 R9: ffff8818d3aefd40 R10: ffff88017fc03800 R11: ffff8818e83933c0 R12: ffff8818d3aefd40 R13: 0000000000000000 R14: ffff8818e8391068 R15: ffff8818fa6e4000 CS: 0010 SS: 0018 #0 [ffff8818d3aefc98] opens_in_grace at ffffffffc00e81e3 [grace] #1 [ffff8818d3aefca8] nfs4_preprocess_stateid_op at ffffffffc02a3e6c [nfsd] #2 [ffff8818d3aefd18] nfsd4_write at ffffffffc028ed5b [nfsd] #3 [ffff8818d3aefd80] nfsd4_proc_compound at ffffffffc0290a0d [nfsd] #4 [ffff8818d3aefdd0] nfsd_dispatch at ffffffffc027b800 [nfsd] #5 [ffff8818d3aefe08] svc_process_common at ffffffffc02017f3 [sunrpc] #6 [ffff8818d3aefe70] svc_process at ffffffffc0201ce3 [sunrpc] #7 [ffff8818d3aefe98] nfsd at ffffffffc027b117 [nfsd] #8 [ffff8818d3aefec8] kthread at ffffffff810b88c1 #9 [ffff8818d3aeff50] ret_from_fork at ffffffff816d1607 The troublemake elem: crash> lock_manager ffff881dc0c38298 struct lock_manager { list = { next = 0xffff881dc0c38298, prev = 0xffff881dc0c38298 }, block_opens = false } Fixes: c87fb4a ("lockd: NLM grace period shouldn't block NFSv4 opens") Signed-off-by: Cheng Lin <[email protected]> Signed-off-by: Yi Wang <[email protected]> Signed-off-by: Chuck Lever <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
andreock
referenced
this issue
in andreock/android_kernel_realme_sm8250
Aug 31, 2022
[ Upstream commit c5c97cadd7ed13381cb6b4bef5c841a66938d350 ] The ubsan reported the following error. It was because sample's raw data missed u32 padding at the end. So it broke the alignment of the array after it. The raw data contains an u32 size prefix so the data size should have an u32 padding after 8-byte aligned data. 27: Sample parsing :util/synthetic-events.c:1539:4: runtime error: store to misaligned address 0x62100006b9bc for type '__u64' (aka 'unsigned long long'), which requires 8 byte alignment 0x62100006b9bc: note: pointer points here 00 00 00 00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ #0 0x561532a9fc96 in perf_event__synthesize_sample util/synthetic-events.c:1539:13 #1 0x5615327f4a4f in do_test tests/sample-parsing.c:284:8 #2 0x5615327f3f50 in test__sample_parsing tests/sample-parsing.c:381:9 #3 0x56153279d3a1 in run_test tests/builtin-test.c:424:9 #4 0x56153279c836 in test_and_print tests/builtin-test.c:454:9 #5 0x56153279b7eb in __cmd_test tests/builtin-test.c:675:4 #6 0x56153279abf0 in cmd_test tests/builtin-test.c:821:9 #7 0x56153264e796 in run_builtin perf.c:312:11 #8 0x56153264cf03 in handle_internal_command perf.c:364:8 #9 0x56153264e47d in run_argv perf.c:408:2 #10 0x56153264c9a9 in main perf.c:538:3 #11 0x7f137ab6fbbc in __libc_start_main (/lib64/libc.so.6+0x38bbc) #12 0x561532596828 in _start ... SUMMARY: UndefinedBehaviorSanitizer: misaligned-pointer-use util/synthetic-events.c:1539:4 in Fixes: 045f8cd ("perf tests: Add a sample parsing test") Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Adrian Hunter <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Jan 13, 2023
commit 2fa7d94afc1afbb4d702760c058dc2d7ed30f226 upstream. The first commit cited below attempts to fix the off-by-one error that appeared in some comparisons with an open range. Due to this error, arithmetically equivalent pieces of code could get different verdicts from the verifier, for example (pseudocode): // 1. Passes the verifier: if (data + 8 > data_end) return early read *(u64 *)data, i.e. [data; data+7] // 2. Rejected by the verifier (should still pass): if (data + 7 >= data_end) return early read *(u64 *)data, i.e. [data; data+7] The attempted fix, however, shifts the range by one in a wrong direction, so the bug not only remains, but also such piece of code starts failing in the verifier: // 3. Rejected by the verifier, but the check is stricter than in OnePlusOSS#1. if (data + 8 >= data_end) return early read *(u64 *)data, i.e. [data; data+7] The change performed by that fix converted an off-by-one bug into off-by-two. The second commit cited below added the BPF selftests written to ensure than code chunks like OnePlusOSS#3 are rejected, however, they should be accepted. This commit fixes the off-by-two error by adjusting new_range in the right direction and fixes the tests by changing the range into the one that should actually fail. Fixes: fb2a311 ("bpf: fix off by one for range markings with L{T, E} patterns") Fixes: b37242c ("bpf: add test cases to bpf selftests to cover all access tests") Signed-off-by: Maxim Mikityanskiy <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] [OP: cherry-pick selftest changes only] Signed-off-by: Ovidiu Panait <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Jan 13, 2023
commit 9c6d778800b921bde3bff3cff5003d1650f942d1 upstream. Automatic kernel fuzzing revealed a recursive locking violation in usb-storage: ============================================ WARNING: possible recursive locking detected 5.18.0 OnePlusOSS#3 Not tainted -------------------------------------------- kworker/1:3/1205 is trying to acquire lock: ffff888018638db8 (&us_interface_key[i]){+.+.}-{3:3}, at: usb_stor_pre_reset+0x35/0x40 drivers/usb/storage/usb.c:230 but task is already holding lock: ffff888018638db8 (&us_interface_key[i]){+.+.}-{3:3}, at: usb_stor_pre_reset+0x35/0x40 drivers/usb/storage/usb.c:230 ... stack backtrace: CPU: 1 PID: 1205 Comm: kworker/1:3 Not tainted 5.18.0 OnePlusOSS#3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Workqueue: usb_hub_wq hub_event Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_deadlock_bug kernel/locking/lockdep.c:2988 [inline] check_deadlock kernel/locking/lockdep.c:3031 [inline] validate_chain kernel/locking/lockdep.c:3816 [inline] __lock_acquire.cold+0x152/0x3ca kernel/locking/lockdep.c:5053 lock_acquire kernel/locking/lockdep.c:5665 [inline] lock_acquire+0x1ab/0x520 kernel/locking/lockdep.c:5630 __mutex_lock_common kernel/locking/mutex.c:603 [inline] __mutex_lock+0x14f/0x1610 kernel/locking/mutex.c:747 usb_stor_pre_reset+0x35/0x40 drivers/usb/storage/usb.c:230 usb_reset_device+0x37d/0x9a0 drivers/usb/core/hub.c:6109 r871xu_dev_remove+0x21a/0x270 drivers/staging/rtl8712/usb_intf.c:622 usb_unbind_interface+0x1bd/0x890 drivers/usb/core/driver.c:458 device_remove drivers/base/dd.c:545 [inline] device_remove+0x11f/0x170 drivers/base/dd.c:537 __device_release_driver drivers/base/dd.c:1222 [inline] device_release_driver_internal+0x1a7/0x2f0 drivers/base/dd.c:1248 usb_driver_release_interface+0x102/0x180 drivers/usb/core/driver.c:627 usb_forced_unbind_intf+0x4d/0xa0 drivers/usb/core/driver.c:1118 usb_reset_device+0x39b/0x9a0 drivers/usb/core/hub.c:6114 This turned out not to be an error in usb-storage but rather a nested device reset attempt. That is, as the rtl8712 driver was being unbound from a composite device in preparation for an unrelated USB reset (that driver does not have pre_reset or post_reset callbacks), its ->remove routine called usb_reset_device() -- thus nesting one reset call within another. Performing a reset as part of disconnect processing is a questionable practice at best. However, the bug report points out that the USB core does not have any protection against nested resets. Adding a reset_in_progress flag and testing it will prevent such errors in the future. Link: https://lore.kernel.org/all/CAB7eexKUpvX-JNiLzhXBDWgfg2T9e9_0Tw4HQ6keN==voRbP0g@mail.gmail.com/ Cc: [email protected] Reported-and-tested-by: Rondreis <[email protected]> Signed-off-by: Alan Stern <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Jan 13, 2023
[ Upstream commit 84a53580c5d2138c7361c7c3eea5b31827e63b35 ] The SRv6 layer allows defining HMAC data that can later be used to sign IPv6 Segment Routing Headers. This configuration is realised via netlink through four attributes: SEG6_ATTR_HMACKEYID, SEG6_ATTR_SECRET, SEG6_ATTR_SECRETLEN and SEG6_ATTR_ALGID. Because the SECRETLEN attribute is decoupled from the actual length of the SECRET attribute, it is possible to provide invalid combinations (e.g., secret = "", secretlen = 64). This case is not checked in the code and with an appropriately crafted netlink message, an out-of-bounds read of up to 64 bytes (max secret length) can occur past the skb end pointer and into skb_shared_info: Breakpoint 1, seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208 208 memcpy(hinfo->secret, secret, slen); (gdb) bt #0 seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208 OnePlusOSS#1 0xffffffff81e012e9 in genl_family_rcv_msg_doit (skb=skb@entry=0xffff88800b1f9f00, nlh=nlh@entry=0xffff88800b1b7600, extack=extack@entry=0xffffc90000ba7af0, ops=ops@entry=0xffffc90000ba7a80, hdrlen=4, net=0xffffffff84237580 <init_net>, family=<optimized out>, family=<optimized out>) at net/netlink/genetlink.c:731 OnePlusOSS#2 0xffffffff81e01435 in genl_family_rcv_msg (extack=0xffffc90000ba7af0, nlh=0xffff88800b1b7600, skb=0xffff88800b1f9f00, family=0xffffffff82fef6c0 <seg6_genl_family>) at net/netlink/genetlink.c:775 OnePlusOSS#3 genl_rcv_msg (skb=0xffff88800b1f9f00, nlh=0xffff88800b1b7600, extack=0xffffc90000ba7af0) at net/netlink/genetlink.c:792 OnePlusOSS#4 0xffffffff81dfffc3 in netlink_rcv_skb (skb=skb@entry=0xffff88800b1f9f00, cb=cb@entry=0xffffffff81e01350 <genl_rcv_msg>) at net/netlink/af_netlink.c:2501 OnePlusOSS#5 0xffffffff81e00919 in genl_rcv (skb=0xffff88800b1f9f00) at net/netlink/genetlink.c:803 OnePlusOSS#6 0xffffffff81dff6ae in netlink_unicast_kernel (ssk=0xffff888010eec800, skb=0xffff88800b1f9f00, sk=0xffff888004aed000) at net/netlink/af_netlink.c:1319 OnePlusOSS#7 netlink_unicast (ssk=ssk@entry=0xffff888010eec800, skb=skb@entry=0xffff88800b1f9f00, portid=portid@entry=0, nonblock=<optimized out>) at net/netlink/af_netlink.c:1345 OnePlusOSS#8 0xffffffff81dff9a4 in netlink_sendmsg (sock=<optimized out>, msg=0xffffc90000ba7e48, len=<optimized out>) at net/netlink/af_netlink.c:1921 ... (gdb) p/x ((struct sk_buff *)0xffff88800b1f9f00)->head + ((struct sk_buff *)0xffff88800b1f9f00)->end $1 = 0xffff88800b1b76c0 (gdb) p/x secret $2 = 0xffff88800b1b76c0 (gdb) p slen $3 = 64 '@' The OOB data can then be read back from userspace by dumping HMAC state. This commit fixes this by ensuring SECRETLEN cannot exceed the actual length of SECRET. Reported-by: Lucas Leong <[email protected]> Tested: verified that EINVAL is correctly returned when secretlen > len(secret) Fixes: 4f4853d ("ipv6: sr: implement API to control SR HMAC structure") Signed-off-by: David Lebrun <[email protected]> Signed-off-by: David S. Miller <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Jan 13, 2023
commit 2b1299322016731d56807aa49254a5ea3080b6b3 upstream. tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as documented for RET instructions after VM exits. Mitigate it with a new one-entry RSB stuffing mechanism and a new LFENCE. == Background == Indirect Branch Restricted Speculation (IBRS) was designed to help mitigate Branch Target Injection and Speculative Store Bypass, i.e. Spectre, attacks. IBRS prevents software run in less privileged modes from affecting branch prediction in more privileged modes. IBRS requires the MSR to be written on every privilege level change. To overcome some of the performance issues of IBRS, Enhanced IBRS was introduced. eIBRS is an "always on" IBRS, in other words, just turn it on once instead of writing the MSR on every privilege level change. When eIBRS is enabled, more privileged modes should be protected from less privileged modes, including protecting VMMs from guests. == Problem == Here's a simplification of how guests are run on Linux' KVM: void run_kvm_guest(void) { // Prepare to run guest VMRESUME(); // Clean up after guest runs } The execution flow for that would look something like this to the processor: 1. Host-side: call run_kvm_guest() 2. Host-side: VMRESUME 3. Guest runs, does "CALL guest_function" 4. VM exit, host runs again 5. Host might make some "cleanup" function calls 6. Host-side: RET from run_kvm_guest() Now, when back on the host, there are a couple of possible scenarios of post-guest activity the host needs to do before executing host code: * on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not touched and Linux has to do a 32-entry stuffing. * on eIBRS hardware, VM exit with IBRS enabled, or restoring the host IBRS=1 shortly after VM exit, has a documented side effect of flushing the RSB except in this PBRSB situation where the software needs to stuff the last RSB entry "by hand". IOW, with eIBRS supported, host RET instructions should no longer be influenced by guest behavior after the host retires a single CALL instruction. However, if the RET instructions are "unbalanced" with CALLs after a VM exit as is the RET in OnePlusOSS#6, it might speculatively use the address for the instruction after the CALL in OnePlusOSS#3 as an RSB prediction. This is a problem since the (untrusted) guest controls this address. Balanced CALL/RET instruction pairs such as in step OnePlusOSS#5 are not affected. == Solution == The PBRSB issue affects a wide variety of Intel processors which support eIBRS. But not all of them need mitigation. Today, X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e., eIBRS systems which enable legacy IBRS explicitly. However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT and most of them need a new mitigation. Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT. The lighter-weight mitigation performs a CALL instruction which is immediately followed by a speculative execution barrier (INT3). This steers speculative execution to the barrier -- just like a retpoline -- which ensures that speculation can never reach an unbalanced RET. Then, ensure this CALL is retired before continuing execution with an LFENCE. In other words, the window of exposure is opened at VM exit where RET behavior is troublesome. While the window is open, force RSB predictions sampling for RET targets to a dead end at the INT3. Close the window with the LFENCE. There is a subset of eIBRS systems which are not vulnerable to PBRSB. Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB. Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO. [ bp: Massage, incorporate review comments from Andy Cooper. ] Signed-off-by: Daniel Sneddon <[email protected]> Co-developed-by: Pawan Gupta <[email protected]> Signed-off-by: Pawan Gupta <[email protected]> Signed-off-by: Borislav Petkov <[email protected]> [ bp: Adjust patch to account for kvm entry being in c ] Signed-off-by: Suraj Jitindar Singh <[email protected]> Signed-off-by: Suleiman Souhlal <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Jan 13, 2023
commit b740d806166979488e798e41743aaec051f2443f upstream. Syzbot reported the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0 Not tainted ------------------------------------------------------ syz-executor307/3029 is trying to acquire lock: ffff0000c02525d8 (&mm->mmap_lock){++++}-{3:3}, at: __might_fault+0x54/0xb4 mm/memory.c:5576 but task is already holding lock: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline] ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline] ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> OnePlusOSS#3 (btrfs-root-00){++++}-{3:3}: down_read_nested+0x64/0x84 kernel/locking/rwsem.c:1624 __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline] btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline] btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279 btrfs_search_slot_get_root+0x74/0x338 fs/btrfs/ctree.c:1637 btrfs_search_slot+0x1b0/0xfd8 fs/btrfs/ctree.c:1944 btrfs_update_root+0x6c/0x5a0 fs/btrfs/root-tree.c:132 commit_fs_roots+0x1f0/0x33c fs/btrfs/transaction.c:1459 btrfs_commit_transaction+0x89c/0x12d8 fs/btrfs/transaction.c:2343 flush_space+0x66c/0x738 fs/btrfs/space-info.c:786 btrfs_async_reclaim_metadata_space+0x43c/0x4e0 fs/btrfs/space-info.c:1059 process_one_work+0x2d8/0x504 kernel/workqueue.c:2289 worker_thread+0x340/0x610 kernel/workqueue.c:2436 kthread+0x12c/0x158 kernel/kthread.c:376 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860 -> OnePlusOSS#2 (&fs_info->reloc_mutex){+.+.}-{3:3}: __mutex_lock_common+0xd4/0xca8 kernel/locking/mutex.c:603 __mutex_lock kernel/locking/mutex.c:747 [inline] mutex_lock_nested+0x38/0x44 kernel/locking/mutex.c:799 btrfs_record_root_in_trans fs/btrfs/transaction.c:516 [inline] start_transaction+0x248/0x944 fs/btrfs/transaction.c:752 btrfs_start_transaction+0x34/0x44 fs/btrfs/transaction.c:781 btrfs_create_common+0xf0/0x1b4 fs/btrfs/inode.c:6651 btrfs_create+0x8c/0xb0 fs/btrfs/inode.c:6697 lookup_open fs/namei.c:3413 [inline] open_last_lookups fs/namei.c:3481 [inline] path_openat+0x804/0x11c4 fs/namei.c:3688 do_filp_open+0xdc/0x1b8 fs/namei.c:3718 do_sys_openat2+0xb8/0x22c fs/open.c:1313 do_sys_open fs/open.c:1329 [inline] __do_sys_openat fs/open.c:1345 [inline] __se_sys_openat fs/open.c:1340 [inline] __arm64_sys_openat+0xb0/0xe0 fs/open.c:1340 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 -> OnePlusOSS#1 (sb_internal#2){.+.+}-{0:0}: percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write include/linux/fs.h:1826 [inline] sb_start_intwrite include/linux/fs.h:1948 [inline] start_transaction+0x360/0x944 fs/btrfs/transaction.c:683 btrfs_join_transaction+0x30/0x40 fs/btrfs/transaction.c:795 btrfs_dirty_inode+0x50/0x140 fs/btrfs/inode.c:6103 btrfs_update_time+0x1c0/0x1e8 fs/btrfs/inode.c:6145 inode_update_time fs/inode.c:1872 [inline] touch_atime+0x1f0/0x4a8 fs/inode.c:1945 file_accessed include/linux/fs.h:2516 [inline] btrfs_file_mmap+0x50/0x88 fs/btrfs/file.c:2407 call_mmap include/linux/fs.h:2192 [inline] mmap_region+0x7fc/0xc14 mm/mmap.c:1752 do_mmap+0x644/0x97c mm/mmap.c:1540 vm_mmap_pgoff+0xe8/0x1d0 mm/util.c:552 ksys_mmap_pgoff+0x1cc/0x278 mm/mmap.c:1586 __do_sys_mmap arch/arm64/kernel/sys.c:28 [inline] __se_sys_mmap arch/arm64/kernel/sys.c:21 [inline] __arm64_sys_mmap+0x58/0x6c arch/arm64/kernel/sys.c:21 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 -> #0 (&mm->mmap_lock){++++}-{3:3}: check_prev_add kernel/locking/lockdep.c:3095 [inline] check_prevs_add kernel/locking/lockdep.c:3214 [inline] validate_chain kernel/locking/lockdep.c:3829 [inline] __lock_acquire+0x1530/0x30a4 kernel/locking/lockdep.c:5053 lock_acquire+0x100/0x1f8 kernel/locking/lockdep.c:5666 __might_fault+0x7c/0xb4 mm/memory.c:5577 _copy_to_user include/linux/uaccess.h:134 [inline] copy_to_user include/linux/uaccess.h:160 [inline] btrfs_ioctl_get_subvol_rootref+0x3a8/0x4bc fs/btrfs/ioctl.c:3203 btrfs_ioctl+0xa08/0xa64 fs/btrfs/ioctl.c:5556 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __arm64_sys_ioctl+0xd0/0x140 fs/ioctl.c:856 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 other info that might help us debug this: Chain exists of: &mm->mmap_lock --> &fs_info->reloc_mutex --> btrfs-root-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-root-00); lock(&fs_info->reloc_mutex); lock(btrfs-root-00); lock(&mm->mmap_lock); *** DEADLOCK *** 1 lock held by syz-executor307/3029: #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline] #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline] #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279 stack backtrace: CPU: 0 PID: 3029 Comm: syz-executor307 Not tainted 6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/30/2022 Call trace: dump_backtrace+0x1c4/0x1f0 arch/arm64/kernel/stacktrace.c:156 show_stack+0x2c/0x54 arch/arm64/kernel/stacktrace.c:163 __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x104/0x16c lib/dump_stack.c:106 dump_stack+0x1c/0x58 lib/dump_stack.c:113 print_circular_bug+0x2c4/0x2c8 kernel/locking/lockdep.c:2053 check_noncircular+0x14c/0x154 kernel/locking/lockdep.c:2175 check_prev_add kernel/locking/lockdep.c:3095 [inline] check_prevs_add kernel/locking/lockdep.c:3214 [inline] validate_chain kernel/locking/lockdep.c:3829 [inline] __lock_acquire+0x1530/0x30a4 kernel/locking/lockdep.c:5053 lock_acquire+0x100/0x1f8 kernel/locking/lockdep.c:5666 __might_fault+0x7c/0xb4 mm/memory.c:5577 _copy_to_user include/linux/uaccess.h:134 [inline] copy_to_user include/linux/uaccess.h:160 [inline] btrfs_ioctl_get_subvol_rootref+0x3a8/0x4bc fs/btrfs/ioctl.c:3203 btrfs_ioctl+0xa08/0xa64 fs/btrfs/ioctl.c:5556 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __arm64_sys_ioctl+0xd0/0x140 fs/ioctl.c:856 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 We do generally the right thing here, copying the references into a temporary buffer, however we are still holding the path when we do copy_to_user from the temporary buffer. Fix this by freeing the path before we copy to user space. Reported-by: [email protected] CC: [email protected] # 4.19+ Reviewed-by: Anand Jain <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Jan 19, 2023
…g the sock [ Upstream commit 3cf7203ca620682165706f70a1b12b5194607dce ] There is a race condition in vxlan that when deleting a vxlan device during receiving packets, there is a possibility that the sock is released after getting vxlan_sock vs from sk_user_data. Then in later vxlan_ecn_decapsulate(), vxlan_get_sk_family() we will got NULL pointer dereference. e.g. #0 [ffffa25ec6978a38] machine_kexec at ffffffff8c669757 OnePlusOSS#1 [ffffa25ec6978a90] __crash_kexec at ffffffff8c7c0a4d OnePlusOSS#2 [ffffa25ec6978b58] crash_kexec at ffffffff8c7c1c48 OnePlusOSS#3 [ffffa25ec6978b60] oops_end at ffffffff8c627f2b OnePlusOSS#4 [ffffa25ec6978b80] page_fault_oops at ffffffff8c678fcb OnePlusOSS#5 [ffffa25ec6978bd8] exc_page_fault at ffffffff8d109542 OnePlusOSS#6 [ffffa25ec6978c00] asm_exc_page_fault at ffffffff8d200b62 [exception RIP: vxlan_ecn_decapsulate+0x3b] RIP: ffffffffc1014e7b RSP: ffffa25ec6978cb0 RFLAGS: 00010246 RAX: 0000000000000008 RBX: ffff8aa000888000 RCX: 0000000000000000 RDX: 000000000000000e RSI: ffff8a9fc7ab803e RDI: ffff8a9fd1168700 RBP: ffff8a9fc7ab803e R8: 0000000000700000 R9: 00000000000010ae R10: ffff8a9fcb748980 R11: 0000000000000000 R12: ffff8a9fd1168700 R13: ffff8aa000888000 R14: 00000000002a0000 R15: 00000000000010ae ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 OnePlusOSS#7 [ffffa25ec6978ce8] vxlan_rcv at ffffffffc10189cd [vxlan] OnePlusOSS#8 [ffffa25ec6978d90] udp_queue_rcv_one_skb at ffffffff8cfb6507 OnePlusOSS#9 [ffffa25ec6978dc0] udp_unicast_rcv_skb at ffffffff8cfb6e45 OnePlusOSS#10 [ffffa25ec6978dc8] __udp4_lib_rcv at ffffffff8cfb8807 OnePlusOSS#11 [ffffa25ec6978e20] ip_protocol_deliver_rcu at ffffffff8cf76951 OnePlusOSS#12 [ffffa25ec6978e48] ip_local_deliver at ffffffff8cf76bde OnePlusOSS#13 [ffffa25ec6978ea0] __netif_receive_skb_one_core at ffffffff8cecde9b OnePlusOSS#14 [ffffa25ec6978ec8] process_backlog at ffffffff8cece139 OnePlusOSS#15 [ffffa25ec6978f00] __napi_poll at ffffffff8ceced1a OnePlusOSS#16 [ffffa25ec6978f28] net_rx_action at ffffffff8cecf1f3 OnePlusOSS#17 [ffffa25ec6978fa0] __softirqentry_text_start at ffffffff8d4000ca OnePlusOSS#18 [ffffa25ec6978ff0] do_softirq at ffffffff8c6fbdc3 Reproducer: https://github.com/Mellanox/ovs-tests/blob/master/test-ovs-vxlan-remove-tunnel-during-traffic.sh Fix this by waiting for all sk_user_data reader to finish before releasing the sock. Reported-by: Jianlin Shi <[email protected]> Suggested-by: Jakub Sitnicki <[email protected]> Fixes: 6a93cc9 ("udp-tunnel: Add a few more UDP tunnel APIs") Signed-off-by: Hangbin Liu <[email protected]> Reviewed-by: Jiri Pirko <[email protected]> Signed-off-by: David S. Miller <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Jan 19, 2023
commit 11933cf1d91d57da9e5c53822a540bbdc2656c16 upstream. The propagate_mnt() function handles mount propagation when creating mounts and propagates the source mount tree @source_mnt to all applicable nodes of the destination propagation mount tree headed by @dest_mnt. Unfortunately it contains a bug where it fails to terminate at peers of @source_mnt when looking up copies of the source mount that become masters for copies of the source mount tree mounted on top of slaves in the destination propagation tree causing a NULL dereference. Once the mechanics of the bug are understood it's easy to trigger. Because of unprivileged user namespaces it is available to unprivileged users. While fixing this bug we've gotten confused multiple times due to unclear terminology or missing concepts. So let's start this with some clarifications: * The terms "master" or "peer" denote a shared mount. A shared mount belongs to a peer group. * A peer group is a set of shared mounts that propagate to each other. They are identified by a peer group id. The peer group id is available in @shared_mnt->mnt_group_id. Shared mounts within the same peer group have the same peer group id. The peers in a peer group can be reached via @shared_mnt->mnt_share. * The terms "slave mount" or "dependent mount" denote a mount that receives propagation from a peer in a peer group. IOW, shared mounts may have slave mounts and slave mounts have shared mounts as their master. Slave mounts of a given peer in a peer group are listed on that peers slave list available at @shared_mnt->mnt_slave_list. * The term "master mount" denotes a mount in a peer group. IOW, it denotes a shared mount or a peer mount in a peer group. The term "master mount" - or "master" for short - is mostly used when talking in the context of slave mounts that receive propagation from a master mount. A master mount of a slave identifies the closest peer group a slave mount receives propagation from. The master mount of a slave can be identified via @slave_mount->mnt_master. Different slaves may point to different masters in the same peer group. * Multiple peers in a peer group can have non-empty ->mnt_slave_lists. Non-empty ->mnt_slave_lists of peers don't intersect. Consequently, to ensure all slave mounts of a peer group are visited the ->mnt_slave_lists of all peers in a peer group have to be walked. * Slave mounts point to a peer in the closest peer group they receive propagation from via @slave_mnt->mnt_master (see above). Together with these peers they form a propagation group (see below). The closest peer group can thus be identified through the peer group id @slave_mnt->mnt_master->mnt_group_id of the peer/master that a slave mount receives propagation from. * A shared-slave mount is a slave mount to a peer group pg1 while also a peer in another peer group pg2. IOW, a peer group may receive propagation from another peer group. If a peer group pg1 is a slave to another peer group pg2 then all peers in peer group pg1 point to the same peer in peer group pg2 via ->mnt_master. IOW, all peers in peer group pg1 appear on the same ->mnt_slave_list. IOW, they cannot be slaves to different peer groups. * A pure slave mount is a slave mount that is a slave to a peer group but is not a peer in another peer group. * A propagation group denotes the set of mounts consisting of a single peer group pg1 and all slave mounts and shared-slave mounts that point to a peer in that peer group via ->mnt_master. IOW, all slave mounts such that @slave_mnt->mnt_master->mnt_group_id is equal to @shared_mnt->mnt_group_id. The concept of a propagation group makes it easier to talk about a single propagation level in a propagation tree. For example, in propagate_mnt() the immediate peers of @dest_mnt and all slaves of @dest_mnt's peer group form a propagation group propg1. So a shared-slave mount that is a slave in propg1 and that is a peer in another peer group pg2 forms another propagation group propg2 together with all slaves that point to that shared-slave mount in their ->mnt_master. * A propagation tree refers to all mounts that receive propagation starting from a specific shared mount. For example, for propagate_mnt() @dest_mnt is the start of a propagation tree. The propagation tree ecompasses all mounts that receive propagation from @dest_mnt's peer group down to the leafs. With that out of the way let's get to the actual algorithm. We know that @dest_mnt is guaranteed to be a pure shared mount or a shared-slave mount. This is guaranteed by a check in attach_recursive_mnt(). So propagate_mnt() will first propagate the source mount tree to all peers in @dest_mnt's peer group: for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) { ret = propagate_one(n); if (ret) goto out; } Notice, that the peer propagation loop of propagate_mnt() doesn't propagate @dest_mnt itself. @dest_mnt is mounted directly in attach_recursive_mnt() after we propagated to the destination propagation tree. The mount that will be mounted on top of @dest_mnt is @source_mnt. This copy was created earlier even before we entered attach_recursive_mnt() and doesn't concern us a lot here. It's just important to notice that when propagate_mnt() is called @source_mnt will not yet have been mounted on top of @dest_mnt. Thus, @source_mnt->mnt_parent will either still point to @source_mnt or - in the case @source_mnt is moved and thus already attached - still to its former parent. For each peer @m in @dest_mnt's peer group propagate_one() will create a new copy of the source mount tree and mount that copy @child on @m such that @child->mnt_parent points to @m after propagate_one() returns. propagate_one() will stash the last destination propagation node @m in @last_dest and the last copy it created for the source mount tree in @last_source. Hence, if we call into propagate_one() again for the next destination propagation node @m, @last_dest will point to the previous destination propagation node and @last_source will point to the previous copy of the source mount tree and mounted on @last_dest. Each new copy of the source mount tree is created from the previous copy of the source mount tree. This will become important later. The peer loop in propagate_mnt() is straightforward. We iterate through the peers copying and updating @last_source and @last_dest as we go through them and mount each copy of the source mount tree @child on a peer @m in @dest_mnt's peer group. After propagate_mnt() handled the peers in @dest_mnt's peer group propagate_mnt() will propagate the source mount tree down the propagation tree that @dest_mnt's peer group propagates to: for (m = next_group(dest_mnt, dest_mnt); m; m = next_group(m, dest_mnt)) { /* everything in that slave group */ n = m; do { ret = propagate_one(n); if (ret) goto out; n = next_peer(n); } while (n != m); } The next_group() helper will recursively walk the destination propagation tree, descending into each propagation group of the propagation tree. The important part is that it takes care to propagate the source mount tree to all peers in the peer group of a propagation group before it propagates to the slaves to those peers in the propagation group. IOW, it creates and mounts copies of the source mount tree that become masters before it creates and mounts copies of the source mount tree that become slaves to these masters. It is important to remember that propagating the source mount tree to each mount @m in the destination propagation tree simply means that we create and mount new copies @child of the source mount tree on @m such that @child->mnt_parent points to @m. Since we know that each node @m in the destination propagation tree headed by @dest_mnt's peer group will be overmounted with a copy of the source mount tree and since we know that the propagation properties of each copy of the source mount tree we create and mount at @m will mostly mirror the propagation properties of @m. We can use that information to create and mount the copies of the source mount tree that become masters before their slaves. The easy case is always when @m and @last_dest are peers in a peer group of a given propagation group. In that case we know that we can simply copy @last_source without having to figure out what the master for the new copy @child of the source mount tree needs to be as we've done that in a previous call to propagate_one(). The hard case is when we're dealing with a slave mount or a shared-slave mount @m in a destination propagation group that we need to create and mount a copy of the source mount tree on. For each propagation group in the destination propagation tree we propagate the source mount tree to we want to make sure that the copies @child of the source mount tree we create and mount on slaves @m pick an ealier copy of the source mount tree that we mounted on a master @m of the destination propagation group as their master. This is a mouthful but as far as we can tell that's the core of it all. But, if we keep track of the masters in the destination propagation tree @m we can use the information to find the correct master for each copy of the source mount tree we create and mount at the slaves in the destination propagation tree @m. Let's walk through the base case as that's still fairly easy to grasp. If we're dealing with the first slave in the propagation group that @dest_mnt is in then we don't yet have marked any masters in the destination propagation tree. We know the master for the first slave to @dest_mnt's peer group is simple @dest_mnt. So we expect this algorithm to yield a copy of the source mount tree that was mounted on a peer in @dest_mnt's peer group as the master for the copy of the source mount tree we want to mount at the first slave @m: for (n = m; ; n = p) { p = n->mnt_master; if (p == dest_master || IS_MNT_MARKED(p)) break; } For the first slave we walk the destination propagation tree all the way up to a peer in @dest_mnt's peer group. IOW, the propagation hierarchy can be walked by walking up the @mnt->mnt_master hierarchy of the destination propagation tree @m. We will ultimately find a peer in @dest_mnt's peer group and thus ultimately @dest_mnt->mnt_master. Btw, here the assumption we listed at the beginning becomes important. Namely, that peers in a peer group pg1 that are slaves in another peer group pg2 appear on the same ->mnt_slave_list. IOW, all slaves who are peers in peer group pg1 point to the same peer in peer group pg2 via their ->mnt_master. Otherwise the termination condition in the code above would be wrong and next_group() would be broken too. So the first iteration sets: n = m; p = n->mnt_master; such that @p now points to a peer or @dest_mnt itself. We walk up one more level since we don't have any marked mounts. So we end up with: n = dest_mnt; p = dest_mnt->mnt_master; If @dest_mnt's peer group is not slave to another peer group then @p is now NULL. If @dest_mnt's peer group is a slave to another peer group then @p now points to @dest_mnt->mnt_master points which is a master outside the propagation tree we're dealing with. Now we need to figure out the master for the copy of the source mount tree we're about to create and mount on the first slave of @dest_mnt's peer group: do { struct mount *parent = last_source->mnt_parent; if (last_source == first_source) break; done = parent->mnt_master == p; if (done && peers(n, parent)) break; last_source = last_source->mnt_master; } while (!done); We know that @last_source->mnt_parent points to @last_dest and @last_dest is the last peer in @dest_mnt's peer group we propagated to in the peer loop in propagate_mnt(). Consequently, @last_source is the last copy we created and mount on that last peer in @dest_mnt's peer group. So @last_source is the master we want to pick. We know that @last_source->mnt_parent->mnt_master points to @last_dest->mnt_master. We also know that @last_dest->mnt_master is either NULL or points to a master outside of the destination propagation tree and so does @p. Hence: done = parent->mnt_master == p; is trivially true in the base condition. We also know that for the first slave mount of @dest_mnt's peer group that @last_dest either points @dest_mnt itself because it was initialized to: last_dest = dest_mnt; at the beginning of propagate_mnt() or it will point to a peer of @dest_mnt in its peer group. In both cases it is guaranteed that on the first iteration @n and @parent are peers (Please note the check for peers here as that's important.): if (done && peers(n, parent)) break; So, as we expected, we select @last_source, which referes to the last copy of the source mount tree we mounted on the last peer in @dest_mnt's peer group, as the master of the first slave in @dest_mnt's peer group. The rest is taken care of by clone_mnt(last_source, ...). We'll skip over that part otherwise this becomes a blogpost. At the end of propagate_mnt() we now mark @m->mnt_master as the first master in the destination propagation tree that is distinct from @dest_mnt->mnt_master. IOW, we mark @dest_mnt itself as a master. By marking @dest_mnt or one of it's peers we are able to easily find it again when we later lookup masters for other copies of the source mount tree we mount copies of the source mount tree on slaves @m to @dest_mnt's peer group. This, in turn allows us to find the master we selected for the copies of the source mount tree we mounted on master in the destination propagation tree again. The important part is to realize that the code makes use of the fact that the last copy of the source mount tree stashed in @last_source was mounted on top of the previous destination propagation node @last_dest. What this means is that @last_source allows us to walk the destination propagation hierarchy the same way each destination propagation node @m does. If we take @last_source, which is the copy of @source_mnt we have mounted on @last_dest in the previous iteration of propagate_one(), then we know @last_source->mnt_parent points to @last_dest but we also know that as we walk through the destination propagation tree that @last_source->mnt_master will point to an earlier copy of the source mount tree we mounted one an earlier destination propagation node @m. IOW, @last_source->mnt_parent will be our hook into the destination propagation tree and each consecutive @last_source->mnt_master will lead us to an earlier propagation node @m via @last_source->mnt_master->mnt_parent. Hence, by walking up @last_source->mnt_master, each of which is mounted on a node that is a master @m in the destination propagation tree we can also walk up the destination propagation hierarchy. So, for each new destination propagation node @m we use the previous copy of @last_source and the fact it's mounted on the previous propagation node @last_dest via @last_source->mnt_master->mnt_parent to determine what the master of the new copy of @last_source needs to be. The goal is to find the _closest_ master that the new copy of the source mount tree we are about to create and mount on a slave @m in the destination propagation tree needs to pick. IOW, we want to find a suitable master in the propagation group. As the propagation structure of the source mount propagation tree we create mirrors the propagation structure of the destination propagation tree we can find @m's closest master - i.e., a marked master - which is a peer in the closest peer group that @m receives propagation from. We store that closest master of @m in @p as before and record the slave to that master in @n We then search for this master @p via @last_source by walking up the master hierarchy starting from the last copy of the source mount tree stored in @last_source that we created and mounted on the previous destination propagation node @m. We will try to find the master by walking @last_source->mnt_master and by comparing @last_source->mnt_master->mnt_parent->mnt_master to @p. If we find @p then we can figure out what earlier copy of the source mount tree needs to be the master for the new copy of the source mount tree we're about to create and mount at the current destination propagation node @m. If @last_source->mnt_master->mnt_parent and @n are peers then we know that the closest master they receive propagation from is @last_source->mnt_master->mnt_parent->mnt_master. If not then the closest immediate peer group that they receive propagation from must be one level higher up. This builds on the earlier clarification at the beginning that all peers in a peer group which are slaves of other peer groups all point to the same ->mnt_master, i.e., appear on the same ->mnt_slave_list, of the closest peer group that they receive propagation from. However, terminating the walk has corner cases. If the closest marked master for a given destination node @m cannot be found by walking up the master hierarchy via @last_source->mnt_master then we need to terminate the walk when we encounter @source_mnt again. This isn't an arbitrary termination. It simply means that the new copy of the source mount tree we're about to create has a copy of the source mount tree we created and mounted on a peer in @dest_mnt's peer group as its master. IOW, @source_mnt is the peer in the closest peer group that the new copy of the source mount tree receives propagation from. We absolutely have to stop @source_mnt because @last_source->mnt_master either points outside the propagation hierarchy we're dealing with or it is NULL because @source_mnt isn't a shared-slave. So continuing the walk past @source_mnt would cause a NULL dereference via @last_source->mnt_master->mnt_parent. And so we have to stop the walk when we encounter @source_mnt again. One scenario where this can happen is when we first handled a series of slaves of @dest_mnt's peer group and then encounter peers in a new peer group that is a slave to @dest_mnt's peer group. We handle them and then we encounter another slave mount to @dest_mnt that is a pure slave to @dest_mnt's peer group. That pure slave will have a peer in @dest_mnt's peer group as its master. Consequently, the new copy of the source mount tree will need to have @source_mnt as it's master. So we walk the propagation hierarchy all the way up to @source_mnt based on @last_source->mnt_master. So terminate on @source_mnt, easy peasy. Except, that the check misses something that the rest of the algorithm already handles. If @dest_mnt has peers in it's peer group the peer loop in propagate_mnt(): for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) { ret = propagate_one(n); if (ret) goto out; } will consecutively update @last_source with each previous copy of the source mount tree we created and mounted at the previous peer in @dest_mnt's peer group. So after that loop terminates @last_source will point to whatever copy of the source mount tree was created and mounted on the last peer in @dest_mnt's peer group. Furthermore, if there is even a single additional peer in @dest_mnt's peer group then @last_source will __not__ point to @source_mnt anymore. Because, as we mentioned above, @dest_mnt isn't even handled in this loop but directly in attach_recursive_mnt(). So it can't even accidently come last in that peer loop. So the first time we handle a slave mount @m of @dest_mnt's peer group the copy of the source mount tree we create will make the __last copy of the source mount tree we created and mounted on the last peer in @dest_mnt's peer group the master of the new copy of the source mount tree we create and mount on the first slave of @dest_mnt's peer group__. But this means that the termination condition that checks for @source_mnt is wrong. The @source_mnt cannot be found anymore by propagate_one(). Instead it will find the last copy of the source mount tree we created and mounted for the last peer of @dest_mnt's peer group again. And that is a peer of @source_mnt not @source_mnt itself. IOW, we fail to terminate the loop correctly and ultimately dereference @last_source->mnt_master->mnt_parent. When @source_mnt's peer group isn't slave to another peer group then @last_source->mnt_master is NULL causing the splat below. For example, assume @dest_mnt is a pure shared mount and has three peers in its peer group: =================================================================================== mount-id mount-parent-id peer-group-id =================================================================================== (@dest_mnt) mnt_master[216] 309 297 shared:216 \ (@source_mnt) mnt_master[218]: 609 609 shared:218 (1) mnt_master[216]: 607 605 shared:216 \ (P1) mnt_master[218]: 624 607 shared:218 (2) mnt_master[216]: 576 574 shared:216 \ (P2) mnt_master[218]: 625 576 shared:218 (3) mnt_master[216]: 545 543 shared:216 \ (P3) mnt_master[218]: 626 545 shared:218 After this sequence has been processed @last_source will point to (P3), the copy generated for the third peer in @dest_mnt's peer group we handled. So the copy of the source mount tree (P4) we create and mount on the first slave of @dest_mnt's peer group: =================================================================================== mount-id mount-parent-id peer-group-id =================================================================================== mnt_master[216] 309 297 shared:216 / / (S0) mnt_slave 483 481 master:216 \ \ (P3) mnt_master[218] 626 545 shared:218 \ / \/ (P4) mnt_slave 627 483 master:218 will pick the last copy of the source mount tree (P3) as master, not (S0). When walking the propagation hierarchy via @last_source's master hierarchy we encounter (P3) but not (S0), i.e., @source_mnt. We can fix this in multiple ways: (1) By setting @last_source to @source_mnt after we processed the peers in @dest_mnt's peer group right after the peer loop in propagate_mnt(). (2) By changing the termination condition that relies on finding exactly @source_mnt to finding a peer of @source_mnt. (3) By only moving @last_source when we actually venture into a new peer group or some clever variant thereof. The first two options are minimally invasive and what we want as a fix. The third option is more intrusive but something we'd like to explore in the near future. This passes all LTP tests and specifically the mount propagation testsuite part of it. It also holds up against all known reproducers of this issues. Final words. First, this is a clever but __worringly__ underdocumented algorithm. There isn't a single detailed comment to be found in next_group(), propagate_one() or anywhere else in that file for that matter. This has been a giant pain to understand and work through and a bug like this is insanely difficult to fix without a detailed understanding of what's happening. Let's not talk about the amount of time that was sunk into fixing this. Second, all the cool kids with access to unshare --mount --user --map-root --propagation=unchanged are going to have a lot of fun. IOW, triggerable by unprivileged users while namespace_lock() lock is held. [ 115.848393] BUG: kernel NULL pointer dereference, address: 0000000000000010 [ 115.848967] #PF: supervisor read access in kernel mode [ 115.849386] #PF: error_code(0x0000) - not-present page [ 115.849803] PGD 0 P4D 0 [ 115.850012] Oops: 0000 [OnePlusOSS#1] PREEMPT SMP PTI [ 115.850354] CPU: 0 PID: 15591 Comm: mount Not tainted 6.1.0-rc7 OnePlusOSS#3 [ 115.850851] Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 [ 115.851510] RIP: 0010:propagate_one.part.0+0x7f/0x1a0 [ 115.851924] Code: 75 eb 4c 8b 05 c2 25 37 02 4c 89 ca 48 8b 4a 10 49 39 d0 74 1e 48 3b 81 e0 00 00 00 74 26 48 8b 92 e0 00 00 00 be 01 00 00 00 <48> 8b 4a 10 49 39 d0 75 e2 40 84 f6 74 38 4c 89 05 84 25 37 02 4d [ 115.853441] RSP: 0018:ffffb8d5443d7d50 EFLAGS: 00010282 [ 115.853865] RAX: ffff8e4d87c41c80 RBX: ffff8e4d88ded780 RCX: ffff8e4da4333a00 [ 115.854458] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8e4d88ded780 [ 115.855044] RBP: ffff8e4d88ded780 R08: ffff8e4da4338000 R09: ffff8e4da43388c0 [ 115.855693] R10: 0000000000000002 R11: ffffb8d540158000 R12: ffffb8d5443d7da8 [ 115.856304] R13: ffff8e4d88ded780 R14: 0000000000000000 R15: 0000000000000000 [ 115.856859] FS: 00007f92c90c9800(0000) GS:ffff8e4dfdc00000(0000) knlGS:0000000000000000 [ 115.857531] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 115.858006] CR2: 0000000000000010 CR3: 0000000022f4c002 CR4: 00000000000706f0 [ 115.858598] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 115.859393] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 115.860099] Call Trace: [ 115.860358] <TASK> [ 115.860535] propagate_mnt+0x14d/0x190 [ 115.860848] attach_recursive_mnt+0x274/0x3e0 [ 115.861212] path_mount+0x8c8/0xa60 [ 115.861503] __x64_sys_mount+0xf6/0x140 [ 115.861819] do_syscall_64+0x5b/0x80 [ 115.862117] ? do_faccessat+0x123/0x250 [ 115.862435] ? syscall_exit_to_user_mode+0x17/0x40 [ 115.862826] ? do_syscall_64+0x67/0x80 [ 115.863133] ? syscall_exit_to_user_mode+0x17/0x40 [ 115.863527] ? do_syscall_64+0x67/0x80 [ 115.863835] ? do_syscall_64+0x67/0x80 [ 115.864144] ? do_syscall_64+0x67/0x80 [ 115.864452] ? exc_page_fault+0x70/0x170 [ 115.864775] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 115.865187] RIP: 0033:0x7f92c92b0ebe [ 115.865480] Code: 48 8b 0d 75 4f 0c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 42 4f 0c 00 f7 d8 64 89 01 48 [ 115.866984] RSP: 002b:00007fff000aa728 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 [ 115.867607] RAX: ffffffffffffffda RBX: 000055a77888d6b0 RCX: 00007f92c92b0ebe [ 115.868240] RDX: 000055a77888d8e0 RSI: 000055a77888e6e0 RDI: 000055a77888e620 [ 115.868823] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000001 [ 115.869403] R10: 0000000000001000 R11: 0000000000000246 R12: 000055a77888e620 [ 115.869994] R13: 000055a77888d8e0 R14: 00000000ffffffff R15: 00007f92c93e4076 [ 115.870581] </TASK> [ 115.870763] Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set rfkill nf_tables nfnetlink qrtr snd_intel8x0 sunrpc snd_ac97_codec ac97_bus snd_pcm snd_timer intel_rapl_msr intel_rapl_common snd vboxguest intel_powerclamp video rapl joydev soundcore i2c_piix4 wmi fuse zram xfs vmwgfx crct10dif_pclmul crc32_pclmul crc32c_intel polyval_clmulni polyval_generic drm_ttm_helper ttm e1000 ghash_clmulni_intel serio_raw ata_generic pata_acpi scsi_dh_rdac scsi_dh_emc scsi_dh_alua dm_multipath [ 115.875288] CR2: 0000000000000010 [ 115.875641] ---[ end trace 0000000000000000 ]--- [ 115.876135] RIP: 0010:propagate_one.part.0+0x7f/0x1a0 [ 115.876551] Code: 75 eb 4c 8b 05 c2 25 37 02 4c 89 ca 48 8b 4a 10 49 39 d0 74 1e 48 3b 81 e0 00 00 00 74 26 48 8b 92 e0 00 00 00 be 01 00 00 00 <48> 8b 4a 10 49 39 d0 75 e2 40 84 f6 74 38 4c 89 05 84 25 37 02 4d [ 115.878086] RSP: 0018:ffffb8d5443d7d50 EFLAGS: 00010282 [ 115.878511] RAX: ffff8e4d87c41c80 RBX: ffff8e4d88ded780 RCX: ffff8e4da4333a00 [ 115.879128] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8e4d88ded780 [ 115.879715] RBP: ffff8e4d88ded780 R08: ffff8e4da4338000 R09: ffff8e4da43388c0 [ 115.880359] R10: 0000000000000002 R11: ffffb8d540158000 R12: ffffb8d5443d7da8 [ 115.880962] R13: ffff8e4d88ded780 R14: 0000000000000000 R15: 0000000000000000 [ 115.881548] FS: 00007f92c90c9800(0000) GS:ffff8e4dfdc00000(0000) knlGS:0000000000000000 [ 115.882234] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 115.882713] CR2: 0000000000000010 CR3: 0000000022f4c002 CR4: 00000000000706f0 [ 115.883314] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 115.883966] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Fixes: f2ebb3a ("smarter propagate_mnt()") Fixes: 5ec0811 ("propogate_mnt: Handle the first propogated copy being a slave") Cc: <[email protected]> Reported-by: Ditang Chen <[email protected]> Signed-off-by: Seth Forshee (Digital Ocean) <[email protected]> Signed-off-by: Christian Brauner (Microsoft) <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Jan 19, 2023
[ Upstream commit b18cba09e374637a0a3759d856a6bca94c133952 ] Commit 9130b8d ("SUNRPC: allow for upcalls for the same uid but different gss service") introduced `auth` argument to __gss_find_upcall(), but in gss_pipe_downcall() it was left as NULL since it (and auth->service) was not (yet) determined. When multiple upcalls with the same uid and different service are ongoing, it could happen that __gss_find_upcall(), which returns the first match found in the pipe->in_downcall list, could not find the correct gss_msg corresponding to the downcall we are looking for. Moreover, it might return a msg which is not sent to rpc.gssd yet. We could see mount.nfs process hung in D state with multiple mount.nfs are executed in parallel. The call trace below is of CentOS 7.9 kernel-3.10.0-1160.24.1.el7.x86_64 but we observed the same hang w/ elrepo kernel-ml-6.0.7-1.el7. PID: 71258 TASK: ffff91ebd4be0000 CPU: 36 COMMAND: "mount.nfs" #0 [ffff9203ca3234f8] __schedule at ffffffffa3b8899f OnePlusOSS#1 [ffff9203ca323580] schedule at ffffffffa3b88eb9 OnePlusOSS#2 [ffff9203ca323590] gss_cred_init at ffffffffc0355818 [auth_rpcgss] OnePlusOSS#3 [ffff9203ca323658] rpcauth_lookup_credcache at ffffffffc0421ebc [sunrpc] OnePlusOSS#4 [ffff9203ca3236d8] gss_lookup_cred at ffffffffc0353633 [auth_rpcgss] OnePlusOSS#5 [ffff9203ca3236e8] rpcauth_lookupcred at ffffffffc0421581 [sunrpc] OnePlusOSS#6 [ffff9203ca323740] rpcauth_refreshcred at ffffffffc04223d3 [sunrpc] OnePlusOSS#7 [ffff9203ca3237a0] call_refresh at ffffffffc04103dc [sunrpc] OnePlusOSS#8 [ffff9203ca3237b8] __rpc_execute at ffffffffc041e1c9 [sunrpc] OnePlusOSS#9 [ffff9203ca323820] rpc_execute at ffffffffc0420a48 [sunrpc] The scenario is like this. Let's say there are two upcalls for services A and B, A -> B in pipe->in_downcall, B -> A in pipe->pipe. When rpc.gssd reads pipe to get the upcall msg corresponding to service B from pipe->pipe and then writes the response, in gss_pipe_downcall the msg corresponding to service A will be picked because only uid is used to find the msg and it is before the one for B in pipe->in_downcall. And the process waiting for the msg corresponding to service A will be woken up. Actual scheduing of that process might be after rpc.gssd processes the next msg. In rpc_pipe_generic_upcall it clears msg->errno (for A). The process is scheduled to see gss_msg->ctx == NULL and gss_msg->msg.errno == 0, therefore it cannot break the loop in gss_create_upcall and is never woken up after that. This patch adds a simple check to ensure that a msg which is not sent to rpc.gssd yet is not chosen as the matching upcall upon receiving a downcall. Signed-off-by: minoura makoto <[email protected]> Signed-off-by: Hiroshi Shimamoto <[email protected]> Tested-by: Hiroshi Shimamoto <[email protected]> Cc: Trond Myklebust <[email protected]> Fixes: 9130b8d ("SUNRPC: allow for upcalls for same uid but different gss service") Signed-off-by: Trond Myklebust <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Feb 12, 2023
[ Upstream commit 6c4ca03bd890566d873e3593b32d034bf2f5a087 ] During EEH error injection testing, a deadlock was encountered in the tg3 driver when tg3_io_error_detected() was attempting to cancel outstanding reset tasks: crash> foreach UN bt ... PID: 159 TASK: c0000000067c6000 CPU: 8 COMMAND: "eehd" ... OnePlusOSS#5 [c00000000681f990] __cancel_work_timer at c00000000019fd18 OnePlusOSS#6 [c00000000681fa30] tg3_io_error_detected at c00800000295f098 [tg3] OnePlusOSS#7 [c00000000681faf0] eeh_report_error at c00000000004e25c ... PID: 290 TASK: c000000036e5f800 CPU: 6 COMMAND: "kworker/6:1" ... OnePlusOSS#4 [c00000003721fbc0] rtnl_lock at c000000000c940d8 OnePlusOSS#5 [c00000003721fbe0] tg3_reset_task at c008000002969358 [tg3] OnePlusOSS#6 [c00000003721fc60] process_one_work at c00000000019e5c4 ... PID: 296 TASK: c000000037a65800 CPU: 21 COMMAND: "kworker/21:1" ... OnePlusOSS#4 [c000000037247bc0] rtnl_lock at c000000000c940d8 OnePlusOSS#5 [c000000037247be0] tg3_reset_task at c008000002969358 [tg3] OnePlusOSS#6 [c000000037247c60] process_one_work at c00000000019e5c4 ... PID: 655 TASK: c000000036f49000 CPU: 16 COMMAND: "kworker/16:2" ...:1 OnePlusOSS#4 [c0000000373ebbc0] rtnl_lock at c000000000c940d8 OnePlusOSS#5 [c0000000373ebbe0] tg3_reset_task at c008000002969358 [tg3] OnePlusOSS#6 [c0000000373ebc60] process_one_work at c00000000019e5c4 ... Code inspection shows that both tg3_io_error_detected() and tg3_reset_task() attempt to acquire the RTNL lock at the beginning of their code blocks. If tg3_reset_task() should happen to execute between the times when tg3_io_error_deteced() acquires the RTNL lock and tg3_reset_task_cancel() is called, a deadlock will occur. Moving tg3_reset_task_cancel() call earlier within the code block, prior to acquiring RTNL, prevents this from happening, but also exposes another deadlock issue where tg3_reset_task() may execute AFTER tg3_io_error_detected() has executed: crash> foreach UN bt PID: 159 TASK: c0000000067d2000 CPU: 9 COMMAND: "eehd" ... OnePlusOSS#4 [c000000006867a60] rtnl_lock at c000000000c940d8 OnePlusOSS#5 [c000000006867a80] tg3_io_slot_reset at c0080000026c2ea8 [tg3] OnePlusOSS#6 [c000000006867b00] eeh_report_reset at c00000000004de88 ... PID: 363 TASK: c000000037564000 CPU: 6 COMMAND: "kworker/6:1" ... OnePlusOSS#3 [c000000036c1bb70] msleep at c000000000259e6c OnePlusOSS#4 [c000000036c1bba0] napi_disable at c000000000c6b848 OnePlusOSS#5 [c000000036c1bbe0] tg3_reset_task at c0080000026d942c [tg3] OnePlusOSS#6 [c000000036c1bc60] process_one_work at c00000000019e5c4 ... This issue can be avoided by aborting tg3_reset_task() if EEH error recovery is already in progress. Fixes: db84bf4 ("tg3: tg3_reset_task() needs to use rtnl_lock to synchronize") Signed-off-by: David Christensen <[email protected]> Reviewed-by: Pavan Chebbi <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Jakub Kicinski <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Apr 23, 2023
commit 60eed1e3d45045623e46944ebc7c42c30a4350f0 upstream. code path: ocfs2_ioctl_move_extents ocfs2_move_extents ocfs2_defrag_extent __ocfs2_move_extent + ocfs2_journal_access_di + ocfs2_split_extent //sub-paths call jbd2_journal_restart + ocfs2_journal_dirty //crash by jbs2 ASSERT crash stacks: PID: 11297 TASK: ffff974a676dcd00 CPU: 67 COMMAND: "defragfs.ocfs2" #0 [ffffb25d8dad3900] machine_kexec at ffffffff8386fe01 OnePlusOSS#1 [ffffb25d8dad3958] __crash_kexec at ffffffff8395959d OnePlusOSS#2 [ffffb25d8dad3a20] crash_kexec at ffffffff8395a45d OnePlusOSS#3 [ffffb25d8dad3a38] oops_end at ffffffff83836d3f OnePlusOSS#4 [ffffb25d8dad3a58] do_trap at ffffffff83833205 OnePlusOSS#5 [ffffb25d8dad3aa0] do_invalid_op at ffffffff83833aa6 OnePlusOSS#6 [ffffb25d8dad3ac0] invalid_op at ffffffff84200d18 [exception RIP: jbd2_journal_dirty_metadata+0x2ba] RIP: ffffffffc09ca54a RSP: ffffb25d8dad3b70 RFLAGS: 00010207 RAX: 0000000000000000 RBX: ffff9706eedc5248 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff97337029ea28 RDI: ffff9706eedc5250 RBP: ffff9703c3520200 R8: 000000000f46b0b2 R9: 0000000000000000 R10: 0000000000000001 R11: 00000001000000fe R12: ffff97337029ea28 R13: 0000000000000000 R14: ffff9703de59bf60 R15: ffff9706eedc5250 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 OnePlusOSS#7 [ffffb25d8dad3ba8] ocfs2_journal_dirty at ffffffffc137fb95 [ocfs2] OnePlusOSS#8 [ffffb25d8dad3be8] __ocfs2_move_extent at ffffffffc139a950 [ocfs2] OnePlusOSS#9 [ffffb25d8dad3c80] ocfs2_defrag_extent at ffffffffc139b2d2 [ocfs2] Analysis This bug has the same root cause of 'commit 7f27ec9 ("ocfs2: call ocfs2_journal_access_di() before ocfs2_journal_dirty() in ocfs2_write_end_nolock()")'. For this bug, jbd2_journal_restart() is called by ocfs2_split_extent() during defragmenting. How to fix For ocfs2_split_extent() can handle journal operations totally by itself. Caller doesn't need to call journal access/dirty pair, and caller only needs to call journal start/stop pair. The fix method is to remove journal access/dirty from __ocfs2_move_extent(). The discussion for this patch: https://oss.oracle.com/pipermail/ocfs2-devel/2023-February/000647.html Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Heming Zhao <[email protected]> Reviewed-by: Joseph Qi <[email protected]> Cc: Mark Fasheh <[email protected]> Cc: Joel Becker <[email protected]> Cc: Junxiao Bi <[email protected]> Cc: Changwei Ge <[email protected]> Cc: Gang He <[email protected]> Cc: Jun Piao <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Jul 15, 2023
[ Upstream commit 05bb0167c80b8f93c6a4e0451b7da9b96db990c2 ] ACPICA commit 770653e3ba67c30a629ca7d12e352d83c2541b1e Before this change we see the following UBSAN stack trace in Fuchsia: #0 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302 OnePlusOSS#1.2 0x000020d0f660777f in ubsan_get_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:41 <libclang_rt.asan.so>+0x3d77f OnePlusOSS#1.1 0x000020d0f660777f in maybe_print_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:51 <libclang_rt.asan.so>+0x3d77f OnePlusOSS#1 0x000020d0f660777f in ~scoped_report() compiler-rt/lib/ubsan/ubsan_diag.cpp:387 <libclang_rt.asan.so>+0x3d77f OnePlusOSS#2 0x000020d0f660b96d in handlepointer_overflow_impl() compiler-rt/lib/ubsan/ubsan_handlers.cpp:809 <libclang_rt.asan.so>+0x4196d OnePlusOSS#3 0x000020d0f660b50d in compiler-rt/lib/ubsan/ubsan_handlers.cpp:815 <libclang_rt.asan.so>+0x4150d OnePlusOSS#4 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302 OnePlusOSS#5 0x000021e4213e2369 in acpi_ds_call_control_method(struct acpi_thread_state*, struct acpi_walk_state*, union acpi_parse_object*) ../../third_party/acpica/source/components/dispatcher/dsmethod.c:605 <platform-bus-x86.so>+0x262369 OnePlusOSS#6 0x000021e421437fac in acpi_ps_parse_aml(struct acpi_walk_state*) ../../third_party/acpica/source/components/parser/psparse.c:550 <platform-bus-x86.so>+0x2b7fac OnePlusOSS#7 0x000021e4214464d2 in acpi_ps_execute_method(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/parser/psxface.c:244 <platform-bus-x86.so>+0x2c64d2 OnePlusOSS#8 0x000021e4213aa052 in acpi_ns_evaluate(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/namespace/nseval.c:250 <platform-bus-x86.so>+0x22a052 OnePlusOSS#9 0x000021e421413dd8 in acpi_ns_init_one_device(acpi_handle, u32, void*, void**) ../../third_party/acpica/source/components/namespace/nsinit.c:735 <platform-bus-x86.so>+0x293dd8 OnePlusOSS#10 0x000021e421429e98 in acpi_ns_walk_namespace(acpi_object_type, acpi_handle, u32, u32, acpi_walk_callback, acpi_walk_callback, void*, void**) ../../third_party/acpica/source/components/namespace/nswalk.c:298 <platform-bus-x86.so>+0x2a9e98 OnePlusOSS#11 0x000021e4214131ac in acpi_ns_initialize_devices(u32) ../../third_party/acpica/source/components/namespace/nsinit.c:268 <platform-bus-x86.so>+0x2931ac OnePlusOSS#12 0x000021e42147c40d in acpi_initialize_objects(u32) ../../third_party/acpica/source/components/utilities/utxfinit.c:304 <platform-bus-x86.so>+0x2fc40d OnePlusOSS#13 0x000021e42126d603 in acpi::acpi_impl::initialize_acpi(acpi::acpi_impl*) ../../src/devices/board/lib/acpi/acpi-impl.cc:224 <platform-bus-x86.so>+0xed603 Add a simple check that avoids incrementing a pointer by zero, but otherwise behaves as before. Note that our findings are against ACPICA 20221020, but the same code exists on master. Link: acpica/acpica@770653e3 Signed-off-by: Bob Moore <[email protected]> Signed-off-by: Rafael J. Wysocki <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Nov 7, 2023
[ Upstream commit a154f5f643c6ecddd44847217a7a3845b4350003 ] The following call trace shows a deadlock issue due to recursive locking of mutex "device_mutex". First lock acquire is in target_for_each_device() and second in target_free_device(). PID: 148266 TASK: ffff8be21ffb5d00 CPU: 10 COMMAND: "iscsi_ttx" #0 [ffffa2bfc9ec3b18] __schedule at ffffffffa8060e7f OnePlusOSS#1 [ffffa2bfc9ec3ba0] schedule at ffffffffa8061224 OnePlusOSS#2 [ffffa2bfc9ec3bb8] schedule_preempt_disabled at ffffffffa80615ee OnePlusOSS#3 [ffffa2bfc9ec3bc8] __mutex_lock at ffffffffa8062fd7 OnePlusOSS#4 [ffffa2bfc9ec3c40] __mutex_lock_slowpath at ffffffffa80631d3 OnePlusOSS#5 [ffffa2bfc9ec3c50] mutex_lock at ffffffffa806320c OnePlusOSS#6 [ffffa2bfc9ec3c68] target_free_device at ffffffffc0935998 [target_core_mod] OnePlusOSS#7 [ffffa2bfc9ec3c90] target_core_dev_release at ffffffffc092f975 [target_core_mod] OnePlusOSS#8 [ffffa2bfc9ec3ca0] config_item_put at ffffffffa79d250f OnePlusOSS#9 [ffffa2bfc9ec3cd0] config_item_put at ffffffffa79d2583 OnePlusOSS#10 [ffffa2bfc9ec3ce0] target_devices_idr_iter at ffffffffc0933f3a [target_core_mod] OnePlusOSS#11 [ffffa2bfc9ec3d00] idr_for_each at ffffffffa803f6fc OnePlusOSS#12 [ffffa2bfc9ec3d60] target_for_each_device at ffffffffc0935670 [target_core_mod] OnePlusOSS#13 [ffffa2bfc9ec3d98] transport_deregister_session at ffffffffc0946408 [target_core_mod] OnePlusOSS#14 [ffffa2bfc9ec3dc8] iscsit_close_session at ffffffffc09a44a6 [iscsi_target_mod] OnePlusOSS#15 [ffffa2bfc9ec3df0] iscsit_close_connection at ffffffffc09a4a88 [iscsi_target_mod] OnePlusOSS#16 [ffffa2bfc9ec3df8] finish_task_switch at ffffffffa76e5d07 OnePlusOSS#17 [ffffa2bfc9ec3e78] iscsit_take_action_for_connection_exit at ffffffffc0991c23 [iscsi_target_mod] OnePlusOSS#18 [ffffa2bfc9ec3ea0] iscsi_target_tx_thread at ffffffffc09a403b [iscsi_target_mod] OnePlusOSS#19 [ffffa2bfc9ec3f08] kthread at ffffffffa76d8080 OnePlusOSS#20 [ffffa2bfc9ec3f50] ret_from_fork at ffffffffa8200364 Fixes: 36d4cb4 ("scsi: target: Avoid that EXTENDED COPY commands trigger lock inversion") Signed-off-by: Junxiao Bi <[email protected]> Link: https://lore.kernel.org/r/[email protected] Reviewed-by: Mike Christie <[email protected]> Signed-off-by: Martin K. Petersen <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
schqiushui
pushed a commit
to PixelExperiencePlus/android_kernel_oneplus_sm8250
that referenced
this issue
Dec 23, 2023
commit 5a22fbcc10f3f7d94c5d88afbbffa240a3677057 upstream. When LAN9303 is MDIO-connected two callchains exist into mdio->bus->write(): 1. switch ports 1&2 ("physical" PHYs): virtual (switch-internal) MDIO bus (lan9303_switch_ops->phy_{read|write})-> lan9303_mdio_phy_{read|write} -> mdiobus_{read|write}_nested 2. LAN9303 virtual PHY: virtual MDIO bus (lan9303_phy_{read|write}) -> lan9303_virt_phy_reg_{read|write} -> regmap -> lan9303_mdio_{read|write} If the latter functions just take mutex_lock(&sw_dev->device->bus->mdio_lock) it triggers a LOCKDEP false-positive splat. It's false-positive because the first mdio_lock in the second callchain above belongs to virtual MDIO bus, the second mdio_lock belongs to physical MDIO bus. Consequent annotation in lan9303_mdio_{read|write} as nested lock (similar to lan9303_mdio_phy_{read|write}, it's the same physical MDIO bus) prevents the following splat: WARNING: possible circular locking dependency detected 5.15.71 OnePlusOSS#1 Not tainted ------------------------------------------------------ kworker/u4:3/609 is trying to acquire lock: ffff000011531c68 (lan9303_mdio:131:(&lan9303_mdio_regmap_config)->lock){+.+.}-{3:3}, at: regmap_lock_mutex but task is already holding lock: ffff0000114c44d8 (&bus->mdio_lock){+.+.}-{3:3}, at: mdiobus_read which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> OnePlusOSS#1 (&bus->mdio_lock){+.+.}-{3:3}: lock_acquire __mutex_lock mutex_lock_nested lan9303_mdio_read _regmap_read regmap_read lan9303_probe lan9303_mdio_probe mdio_probe really_probe __driver_probe_device driver_probe_device __device_attach_driver bus_for_each_drv __device_attach device_initial_probe bus_probe_device deferred_probe_work_func process_one_work worker_thread kthread ret_from_fork -> #0 (lan9303_mdio:131:(&lan9303_mdio_regmap_config)->lock){+.+.}-{3:3}: __lock_acquire lock_acquire.part.0 lock_acquire __mutex_lock mutex_lock_nested regmap_lock_mutex regmap_read lan9303_phy_read dsa_slave_phy_read __mdiobus_read mdiobus_read get_phy_device mdiobus_scan __mdiobus_register dsa_register_switch lan9303_probe lan9303_mdio_probe mdio_probe really_probe __driver_probe_device driver_probe_device __device_attach_driver bus_for_each_drv __device_attach device_initial_probe bus_probe_device deferred_probe_work_func process_one_work worker_thread kthread ret_from_fork other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&bus->mdio_lock); lock(lan9303_mdio:131:(&lan9303_mdio_regmap_config)->lock); lock(&bus->mdio_lock); lock(lan9303_mdio:131:(&lan9303_mdio_regmap_config)->lock); *** DEADLOCK *** 5 locks held by kworker/u4:3/609: #0: ffff000002842938 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work OnePlusOSS#1: ffff80000bacbd60 (deferred_probe_work){+.+.}-{0:0}, at: process_one_work OnePlusOSS#2: ffff000007645178 (&dev->mutex){....}-{3:3}, at: __device_attach OnePlusOSS#3: ffff8000096e6e78 (dsa2_mutex){+.+.}-{3:3}, at: dsa_register_switch OnePlusOSS#4: ffff0000114c44d8 (&bus->mdio_lock){+.+.}-{3:3}, at: mdiobus_read stack backtrace: CPU: 1 PID: 609 Comm: kworker/u4:3 Not tainted 5.15.71 OnePlusOSS#1 Workqueue: events_unbound deferred_probe_work_func Call trace: dump_backtrace show_stack dump_stack_lvl dump_stack print_circular_bug check_noncircular __lock_acquire lock_acquire.part.0 lock_acquire __mutex_lock mutex_lock_nested regmap_lock_mutex regmap_read lan9303_phy_read dsa_slave_phy_read __mdiobus_read mdiobus_read get_phy_device mdiobus_scan __mdiobus_register dsa_register_switch lan9303_probe lan9303_mdio_probe ... Cc: [email protected] Fixes: dc70058 ("net: dsa: LAN9303: add MDIO managed mode support") Signed-off-by: Alexander Sverdlin <[email protected]> Reviewed-by: Andrew Lunn <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Paolo Abeni <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
Ante0
pushed a commit
to Ante0/android_kernel_oneplus_sm8250
that referenced
this issue
Sep 9, 2024
[ Upstream commit ca10845 ] While running btrfs/061, btrfs/073, btrfs/078, or btrfs/178 we hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.9.0-rc3+ OnePlusOSS#4 Not tainted ------------------------------------------------------ kswapd0/100 is trying to acquire lock: ffff96ecc22ef4a0 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x330 but task is already holding lock: ffffffff8dd74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> OnePlusOSS#3 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x65/0x80 slab_pre_alloc_hook.constprop.0+0x20/0x200 kmem_cache_alloc+0x37/0x270 alloc_inode+0x82/0xb0 iget_locked+0x10d/0x2c0 kernfs_get_inode+0x1b/0x130 kernfs_get_tree+0x136/0x240 sysfs_get_tree+0x16/0x40 vfs_get_tree+0x28/0xc0 path_mount+0x434/0xc00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> OnePlusOSS#2 (kernfs_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 kernfs_add_one+0x23/0x150 kernfs_create_link+0x63/0xa0 sysfs_do_create_link_sd+0x5e/0xd0 btrfs_sysfs_add_devices_dir+0x81/0x130 btrfs_init_new_device+0x67f/0x1250 btrfs_ioctl+0x1ef/0x2e20 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> OnePlusOSS#1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 btrfs_chunk_alloc+0x125/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_insert_empty_items+0x64/0xb0 btrfs_insert_delayed_items+0x90/0x4f0 btrfs_commit_inode_delayed_items+0x93/0x140 btrfs_log_inode+0x5de/0x2020 btrfs_log_inode_parent+0x429/0xc90 btrfs_log_new_name+0x95/0x9b btrfs_rename2+0xbb9/0x1800 vfs_rename+0x64f/0x9f0 do_renameat2+0x320/0x4e0 __x64_sys_rename+0x1f/0x30 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: __lock_acquire+0x119c/0x1fc0 lock_acquire+0xa7/0x3d0 __mutex_lock+0x7e/0x7e0 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 kthread+0x138/0x160 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> kernfs_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(kernfs_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/100: #0: ffffffff8dd74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 OnePlusOSS#1: ffffffff8dd65c50 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x115/0x290 OnePlusOSS#2: ffff96ed2ade30e0 (&type->s_umount_key#36){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0 stack backtrace: CPU: 0 PID: 100 Comm: kswapd0 Not tainted 5.9.0-rc3+ OnePlusOSS#4 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb8 check_noncircular+0x12d/0x150 __lock_acquire+0x119c/0x1fc0 lock_acquire+0xa7/0x3d0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 __mutex_lock+0x7e/0x7e0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? lock_acquire+0xa7/0x3d0 ? find_held_lock+0x2b/0x80 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 ? _raw_spin_unlock_irqrestore+0x41/0x50 ? add_wait_queue_exclusive+0x70/0x70 ? balance_pgdat+0x670/0x670 kthread+0x138/0x160 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 This happens because we are holding the chunk_mutex at the time of adding in a new device. However we only need to hold the device_list_mutex, as we're going to iterate over the fs_devices devices. Move the sysfs init stuff outside of the chunk_mutex to get rid of this lockdep splat. CC: [email protected] # 4.4.x: f3cd2c5: btrfs: sysfs, rename device_link add/remove functions CC: [email protected] # 4.4.x Reported-by: David Sterba <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
Ante0
pushed a commit
to Ante0/android_kernel_oneplus_sm8250
that referenced
this issue
Sep 9, 2024
[ Upstream commit e773ca7 ] Actually, burst size is equal to '1 << desc->rqcfg.brst_size'. we should use burst size, not desc->rqcfg.brst_size. dma memcpy performance on Rockchip RV1126 @ 1512MHz A7, 1056MHz LPDDR3, 200MHz DMA: dmatest: /# echo dma0chan0 > /sys/module/dmatest/parameters/channel /# echo 4194304 > /sys/module/dmatest/parameters/test_buf_size /# echo 8 > /sys/module/dmatest/parameters/iterations /# echo y > /sys/module/dmatest/parameters/norandom /# echo y > /sys/module/dmatest/parameters/verbose /# echo 1 > /sys/module/dmatest/parameters/run dmatest: dma0chan0-copy0: result OnePlusOSS#1: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result OnePlusOSS#2: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result OnePlusOSS#3: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result OnePlusOSS#4: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result OnePlusOSS#5: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result OnePlusOSS#6: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result OnePlusOSS#7: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result OnePlusOSS#8: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 Before: dmatest: dma0chan0-copy0: summary 8 tests, 0 failures 48 iops 200338 KB/s (0) After this patch: dmatest: dma0chan0-copy0: summary 8 tests, 0 failures 179 iops 734873 KB/s (0) After this patch and increase dma clk to 400MHz: dmatest: dma0chan0-copy0: summary 8 tests, 0 failures 259 iops 1062929 KB/s (0) Signed-off-by: Sugar Zhang <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Vinod Koul <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
Ante0
pushed a commit
to Ante0/android_kernel_oneplus_sm8250
that referenced
this issue
Sep 9, 2024
commit 190113b upstream. Prarit reported that depending on the affinity setting the ' irq $N: Affinity broken due to vector space exhaustion.' message is showing up in dmesg, but the vector space on the CPUs in the affinity mask is definitely not exhausted. Shung-Hsi provided traces and analysis which pinpoints the problem: The ordering of trying to assign an interrupt vector in assign_irq_vector_any_locked() is simply wrong if the interrupt data has a valid node assigned. It does: 1) Try the intersection of affinity mask and node mask 2) Try the node mask 3) Try the full affinity mask 4) Try the full online mask Obviously OnePlusOSS#2 and OnePlusOSS#3 are in the wrong order as the requested affinity mask has to take precedence. In the observed cases OnePlusOSS#1 failed because the affinity mask did not contain CPUs from node 0. That made it allocate a vector from node 0, thereby breaking affinity and emitting the misleading message. Revert the order of OnePlusOSS#2 and OnePlusOSS#3 so the full affinity mask without the node intersection is tried before actually affinity is broken. If no node is assigned then only the full affinity mask and if that fails the full online mask is tried. Fixes: d6ffc6a ("x86/vector: Respect affinity mask in irq descriptor") Reported-by: Prarit Bhargava <[email protected]> Reported-by: Shung-Hsi Yu <[email protected]> Signed-off-by: Thomas Gleixner <[email protected]> Tested-by: Shung-Hsi Yu <[email protected]> Cc: [email protected] Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]>
Ante0
pushed a commit
to Ante0/android_kernel_oneplus_sm8250
that referenced
this issue
Sep 9, 2024
[ Upstream commit 4a9d81caf841cd2c0ae36abec9c2963bf21d0284 ] If the elem is deleted during be iterated on it, the iteration process will fall into an endless loop. kernel: NMI watchdog: BUG: soft lockup - CPU#4 stuck for 22s! [nfsd:17137] PID: 17137 TASK: ffff8818d93c0000 CPU: 4 COMMAND: "nfsd" [exception RIP: __state_in_grace+76] RIP: ffffffffc00e817c RSP: ffff8818d3aefc98 RFLAGS: 00000246 RAX: ffff881dc0c38298 RBX: ffffffff81b03580 RCX: ffff881dc02c9f50 RDX: ffff881e3fce8500 RSI: 0000000000000001 RDI: ffffffff81b03580 RBP: ffff8818d3aefca0 R8: 0000000000000020 R9: ffff8818d3aefd40 R10: ffff88017fc03800 R11: ffff8818e83933c0 R12: ffff8818d3aefd40 R13: 0000000000000000 R14: ffff8818e8391068 R15: ffff8818fa6e4000 CS: 0010 SS: 0018 #0 [ffff8818d3aefc98] opens_in_grace at ffffffffc00e81e3 [grace] OnePlusOSS#1 [ffff8818d3aefca8] nfs4_preprocess_stateid_op at ffffffffc02a3e6c [nfsd] OnePlusOSS#2 [ffff8818d3aefd18] nfsd4_write at ffffffffc028ed5b [nfsd] OnePlusOSS#3 [ffff8818d3aefd80] nfsd4_proc_compound at ffffffffc0290a0d [nfsd] OnePlusOSS#4 [ffff8818d3aefdd0] nfsd_dispatch at ffffffffc027b800 [nfsd] OnePlusOSS#5 [ffff8818d3aefe08] svc_process_common at ffffffffc02017f3 [sunrpc] OnePlusOSS#6 [ffff8818d3aefe70] svc_process at ffffffffc0201ce3 [sunrpc] OnePlusOSS#7 [ffff8818d3aefe98] nfsd at ffffffffc027b117 [nfsd] OnePlusOSS#8 [ffff8818d3aefec8] kthread at ffffffff810b88c1 OnePlusOSS#9 [ffff8818d3aeff50] ret_from_fork at ffffffff816d1607 The troublemake elem: crash> lock_manager ffff881dc0c38298 struct lock_manager { list = { next = 0xffff881dc0c38298, prev = 0xffff881dc0c38298 }, block_opens = false } Fixes: c87fb4a ("lockd: NLM grace period shouldn't block NFSv4 opens") Signed-off-by: Cheng Lin <[email protected]> Signed-off-by: Yi Wang <[email protected]> Signed-off-by: Chuck Lever <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
OnePlus 8 calls black screen, the screen is always black, unable to wake up.
And this is random. There may be three calls, one of them is black, or it may be all black.
The text was updated successfully, but these errors were encountered: