forked from jtrummler/CPLN675_Final
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWang_Rummler_Final.Rmd
697 lines (582 loc) · 24.4 KB
/
Wang_Rummler_Final.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
---
title: "Urban Growth Modeling in Nashville, Tennessee"
author: "Shengqian Wang and Jack Rummler"
date: "2023-04-26"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(tigris)
library(dplyr)
library(ggplot2)
library(tidyverse)
library(sf)
library(raster)
library(knitr)
library(kableExtra)
library(tidycensus)
library(tigris)
library(FNN)
#library(QuantPsyc) # JE Note: in R 4.1, QuantPsyc package not available.
library(caret)
library(yardstick)
library(pscl)
library(plotROC)
library(ggrepel)
library(pROC)
library(grid)
library(gridExtra)
library(viridis)
library(igraph)
library(RSocrata)
library(paletteer)
plotTheme <- theme(
plot.title =element_text(size=12),
plot.subtitle = element_text(size=8),
plot.caption = element_text(size = 6),
axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
axis.text.y = element_text(size = 10),
axis.title.y = element_text(size = 10),
# Set the entire chart region to blank
panel.background=element_blank(),
plot.background=element_blank(),
panel.border=element_rect(colour="black"),
# Format the grid
panel.grid.major=element_line(colour="#D0D0D0",size=.75),
axis.ticks=element_blank())
mapTheme <- theme(plot.title =element_text(size=12),
plot.subtitle = element_text(size=8),
plot.caption = element_text(size = 6),
axis.line=element_blank(),
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.ticks=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank(),
panel.background=element_blank(),
panel.border=element_blank(),
panel.grid.major=element_line(colour = 'transparent'),
panel.grid.minor=element_blank(),
legend.direction = "vertical",
legend.position = "right",
plot.margin = margin(1, 1, 1, 1, 'cm'),
legend.key.height = unit(1, "cm"), legend.key.width = unit(0.2, "cm"))
source("https://raw.githubusercontent.com/urbanSpatial/Public-Policy-Analytics-Landing/master/functions.r")
qB <- function(df, variable, rnd) {
if (missing(rnd)) {
as.character(quantile(round(df[[variable]],2),
c(.01,.2,.4,.6,.8), na.rm=T))
} else if (rnd == FALSE | rnd == F) {
as.character(formatC(quantile(df[[variable]],
c(.01,.2,.4,.6,.8), na.rm=T),
digits = 3))
}
}
palette2 <- c("#41b6c4","#253494")
palette4 <- c("#a1dab4","#41b6c4","#2c7fb8","#253494")
palette5 <- c("#ffffcc","#a1dab4","#41b6c4","#2c7fb8","#253494")
palette10 <- c("#f7fcf0","#e0f3db","#ccebc5","#a8ddb5","#7bccc4",
"#4eb3d3","#2b8cbe","#0868ac","#084081","#f7fcf0")
paletteMain <- c("#AFD0C9FF", "#91A1BAFF", "#51628EFF","#182044FF","#0E122DFF")
paletteQual <- c("#B39DDB", "#9575CD", "#7986CB", "#4FC3F7", "#4DD0E1", "#4DB6AC", "#81C784", "#AED581", "#DCE775", "#FFF176", "#FFD54F", "#FFB74D", "#FF8A65", "#A1887F", "#90A4AE", "#B0BEC5")
```
# Introduction
Urban growth forecasting is a tactful strategy to predict where people may live in the future. Looking at population projections and land cover data, we can understand areas that may have greater development pressure so planners can prepare for future growth scenarios. In this study, we forecast urban growth in Davidson County, Tennessee.
```{r, fig.width=12}
tennessee <- counties("TN") # county via tigris
nashville <- tennessee %>%
dplyr::filter(NAMELSAD == "Davidson County")%>%
st_transform('ESRI:103527')
ggplot()+
geom_sf(data=tennessee, fill='grey', color='black')+
geom_sf(data=nashville, fill='red', color='black')+
labs(title="Davidson County, Tennessee")+
mapTheme()
```
## Study Region
Davidson County is the second-largest county in the state of Tennessee, with Nashville as the city capital. We chose this our study region for urban growth modeling given that between 2010 and 2020, the county grew over 11%, which is well above the national average. We wanted to select a study region that still had room to develop, but is experiencing extensive population growth, indicating both the need for supply and demand side solutions for future development.
## Methodology
We are developing a predictive model of urban growth for the year 2029. We do this by collecting land use cover change from the years 2011 and 2019 to analyze change between the two, and predict the land use change between 2019 and 2029. We also engineer a variety of features ranging from land use, population, infrastructure, and development. Land cover change, our dependent variable, and our predictive variables will be aggregated into a fishnet of our study region to create a granular, equal spatial structure. We will then use this model to develop an allocation procedure from both the demand side and supply side of future development.
**Demand:** Looking at population projections for the year 2029, we distribute population projections among Davidson County's and predict land cover and future development in 2029.
**Supply:** xxx
## Planning Application
Planners often try to assess population growth using a variety of strategies, such as demographic trend analyses, economic analyses, and scenario planning, to name a few. We are completing this model because the process of predicting growth is challenging. While using previous population data, historical land use change, and other spatially related factors, growth of a city is often non-linear and non-predictive given factors like economic development and job opportunities, public polcicies, and migration.
Moreover, while regions like Davidson County have a strong urban core, much of the region is rapidly sprawling. In 2014, a [study]("https://wpln.org/post/how-bad-is-nashvilles-sprawl-new-study-ranks-it-among-the-worst/") by Smart Growth America and University of Utah ranked the Nashville region as one of the worst of nearly 221 metro areas for urban sprawl. We know that incentivizing growth in areas with infill potential, investing in transit-oriented development, and disincentivizing continual urban sprawl can help planners engage in more sustainable, compact development to minimize strain of infrastructure and natural resources.
```{r, warning = FALSE, message = FALSE}
#this function converts a column in to quintiles. It is used for mapping.
quintileBreaks <- function(df,variable) {
as.character(quantile(df[[variable]],
c(.01,.2,.4,.6,.8),na.rm=T))
}
#This function can be used to convert a polygon sf to centroids xy coords.
xyC <- function(aPolygonSF) {
as.data.frame(
cbind(x=st_coordinates(st_centroid(aPolygonSF))[,1],
y=st_coordinates(st_centroid(aPolygonSF))[,2]))
}
#this function convert a raster to a data frame so it can be plotted in ggplot
rast <- function(inRaster) {
data.frame(
xyFromCell(inRaster, 1:ncell(inRaster)),
value = getValues(inRaster)) }
```
# Data Set-Up
## Fishnet
We first create the spatial structure of our fishnet grid. We decided to use a 1000 feet resolution. This was a challenge to decide given the balance between maximizing our model's accuracy while balancing out the computation intensity of the modeling process.
```{r}
# create fishnet
Nashville_fishnet <-
st_make_grid(nashville, 1000) %>%
st_sf()
# clip to nashville
Nashville_fishnet <-
Nashville_fishnet[nashville,]
# plot
ggplot() +
geom_sf(data=Nashville_fishnet) +
labs(title="Fishnet, 1000 Feet Resolution") +
mapTheme()
```
```{r}
# ensures each fishnet row has a unique ID to join our features onto
Nashville_fishnet <-
Nashville_fishnet %>%
rownames_to_column("fishnetID") %>%
mutate(fishnetID = as.numeric(fishnetID)) %>%
dplyr::select(fishnetID)
```
## Land Use Change
```{r}
#NLCD LULC & LUCC
lucc_input <- raster("https://github.com/ObjQIAN/warehouseii/raw/main/nlcd_lucc_clip.tif")
lulc_input <- raster("https://github.com/ObjQIAN/warehouseii/raw/main/nlcd_lulc_clip.tif")
#plot(lucc_input)
lucc_clip <- mask(lucc_input, nashville)
lulc_clip <- mask(lulc_input, nashville)
#plot lucc
ggplot() +
geom_sf(data=nashville) +
geom_raster(data=rast(lucc_clip) %>% na.omit %>% filter(value > 0),
aes(x,y,fill=as.factor(value))) +
scale_fill_manual(values=c(paletteQual[4:16]))+
labs(title = "Land Cover Change, 2009-2019") +
mapTheme() +
theme(legend.direction="horizontal")
```
```{r}
#plot lulc
ggplot() +
geom_sf(data=nashville) +
geom_raster(data=rast(lulc_clip) %>% na.omit %>% filter(value > 0),
aes(x,y,fill=as.factor(value))) +
labs(title = "Land Cover (2011)", subtitle="Davidson County, TN") +
scale_fill_manual(values=c(paletteQual), name="Land Cover Type")+
mapTheme() +
theme(legend.position="bottom")
```
```{r}
#reclass matrix
reclassMatrix <-
matrix(c(
0,2,0,
2,3,1,
3,Inf,0),
ncol=3, byrow=T)
reclassMatrix
```
```{r}
#reclassify lucc
lucc <-
reclassify(lucc_clip,reclassMatrix)
lucc[lucc < 1] <- NA
names(lucc) <- "lc_change"
ggplot() +
geom_sf(data=nashville) +
geom_raster(data=rast(lucc) %>% na.omit,
aes(x,y,fill=as.factor(value))) +
scale_fill_viridis(discrete=TRUE, name ="Land Cover\nChange") +
labs(title="Development Land Use Change") +
mapTheme()
```
```{r}
changePoints <-
rasterToPoints(lucc) %>%
as.data.frame() %>%
st_as_sf(coords = c("x", "y"), crs = st_crs(Nashville_fishnet))
fishnet <-
aggregate(changePoints, Nashville_fishnet, sum) %>%
mutate(lc_change = ifelse(is.na(lc_change),0,1),
lc_change = as.factor(lc_change))
ggplot() +
geom_sf(data=nashville) +
geom_point(data=fishnet,
aes(x=xyC(fishnet)$x, y=xyC(fishnet)$y, colour=lc_change)) +
scale_colour_manual(values = c("#4FC3F7", "#81C784"),
labels=c("No Change","New Development"),
name = "") +
labs(title = "Land Cover Development Change", subtitle = "As fishnet centroids") +
mapTheme()
```
```{r}
## plot land use in 2011
ggplot() +
geom_sf(data=nashville) +
geom_raster(data=rast(lulc_clip) %>% na.omit %>% filter(value > 0),
aes(x,y,fill=as.factor(value))) +
#scale_fill_viridis(discrete=TRUE, name ="") +
scale_fill_manual(values=c(paletteQual), name="Land Cover Type")+
labs(title = "Land Cover, 2011") +
mapTheme() +
theme(legend.direction="horizontal")
```
```{r}
# landuse reclassification
developed <- lulc_clip == 21 | lulc_clip == 22 | lulc_clip == 23 | lulc_clip == 24
forest <- lulc_clip == 41 | lulc_clip == 42 | lulc_clip == 43
farm <- lulc_clip == 81 | lulc_clip == 82
wetlands <- lulc_clip == 90 | lulc_clip == 95
otherUndeveloped <- lulc_clip == 52 | lulc_clip == 71 | lulc_clip == 31
water <- lulc_clip == 11
names(developed) <- "developed"
names(forest) <- "forest"
names(farm) <- "farm"
names(wetlands) <- "wetlands"
names(otherUndeveloped) <- "otherUndeveloped"
names(water) <- "water"
```
```{r}
# aggregateRaster
aggregateRaster <- function(inputRasterList, theFishnet) {
#create an empty fishnet with the same dimensions as the input fishnet
theseFishnets <- theFishnet %>% dplyr::select()
#for each raster in the raster list
for (i in inputRasterList) {
#create a variable name corresponding to the ith raster
varName <- names(i)
#convert raster to points as an sf
thesePoints <-
rasterToPoints(i) %>%
as.data.frame() %>%
st_as_sf(coords = c("x", "y"), crs = st_crs(theFishnet)) %>%
filter(.[[1]] == 1)
#aggregate to the fishnet
thisFishnet <-
aggregate(thesePoints, theFishnet, length) %>%
mutate(!!varName := ifelse(is.na(.[[1]]),0,1))
#add to the larger fishnet
theseFishnets <- cbind(theseFishnets,thisFishnet)
}
#output all aggregates as one large fishnet
return(theseFishnets)
}
```
# Feature Aggregation
The following features have been added to our fishnet below, in addition to our land use change:
1. Total Population - American Community Survey (2011 and 2019)
2. % of Occupied Housing Units - American Community Survey (2011 and 2019)
3. Building Permit Applications - Open Data Nashville (2020 to 2023)
...
## Census Data
We pulled two main variables from the census: total population and occupied housing units. We hypothesized that these were predictive of development, thus predictive of land use change. With a greater density of people and housing units, these areas are likely to grow. We gathered these variables at the census tract level.
```{r}
census_api_key("3c896250ea8d421462ade754e4dcecdf8f55e0f2", overwrite = TRUE)
nashvillePop2011 <-
get_acs(geography = "tract",
variables = c("B01001_001E", # Total population
"B25002_002E" # Occupied housing units
),
year = 2011,
state = 47,
geometry = TRUE,
county = 037,
output = "wide") %>%
rename(totalPop2011 = B01001_001E,
totalOccupied2011 = B25002_002E
) %>%
dplyr::select(-c("B01001_001M", "B25002_002M")) %>%
st_transform('ESRI:103527')
nashvillePop2019 <-
get_acs(geography = "tract",
variables = c("B01001_001E", # Total population
"B25002_002E" # Occupied housing units
),
year = 2019,
state = 47,
geometry = TRUE,
county = 037,
output = "wide") %>%
rename(totalPop2019 = B01001_001E,
totalOccupied2019 = B25002_002E
) %>%
dplyr::select(-c("B01001_001M", "B25002_002M")) %>%
st_transform('ESRI:103527')
```
### Total Populaion - 2011 vs. 2019
First, we look at total population within each census tract in years 2011 and 2019.
```{r, fig.width=12}
grid.arrange(
ggplot()+
geom_sf(data=nashvillePop2011, aes(fill=q5(totalPop2011)), color=NA) +
scale_fill_manual(values=paletteMain,
labels=(qBr(nashvillePop2011, "totalPop2011")),
name="Population\nQuintiles")+
labs(title = "Total Population - 2011",
subtitle = "Davidson County Census Tracts")+
mapTheme(),
ggplot()+
geom_sf(data=nashvillePop2019, aes(fill=q5(totalPop2019)), color=NA) +
scale_fill_manual(values=paletteMain,
labels=(qBr(nashvillePop2019, "totalPop2019")),
name="Population\nQuintiles")+
labs(title = "Total Population - 2019",
subtitle = "Davidson County Census Tracts")+
mapTheme(),
ncol=2
)
```
### Occupied Housing Units - 2011 vs. 2019
Now, we visualize the total occupied housing units in each census tract.
```{r, fig.width=12}
grid.arrange(
ggplot()+
geom_sf(data=nashvillePop2011, aes(fill=q5(totalOccupied2011)), color=NA) +
scale_fill_manual(values=paletteMain,
labels=(qB(nashvillePop2011, "totalOccupied2011")),
name="Housing Unit\nQuintiles")+
labs(title = "Occupied Housing Units - 2011",
subtitle = "Davidson County Census Tracts")+
mapTheme(),
ggplot()+
geom_sf(data=nashvillePop2019, aes(fill=q5(totalOccupied2019)), color=NA) +
scale_fill_manual(values=paletteMain,
labels=(qB(nashvillePop2019, "totalOccupied2019")),
name="Housing Unit\nQuintiles")+
labs(title = "Occupied Housing Units - 2019",
subtitle = "Davidson County Census Tracts")+
mapTheme(),
ncol=2
)
```
### Census Features as Fishnet
We aggregate all of the census features for each year into our fishnet grid, and visualize them within the fishnet, also including the total change in population and housing units for each grid below.
```{r, fig.width=12}
fishnetPopulation11 <-
st_interpolate_aw(nashvillePop2011["totalPop2011"], Nashville_fishnet, extensive=TRUE) %>%
as.data.frame(.) %>%
rownames_to_column(var = "fishnetID") %>%
left_join(Nashville_fishnet %>%
mutate(fishnetID = as.character(fishnetID)),
., by=c("fishnetID"='fishnetID')) %>%
mutate(totalPop2011 = replace_na(totalPop2011,0)) %>%
dplyr::select(totalPop2011)
fishnetPopulation19 <-
st_interpolate_aw(nashvillePop2019["totalPop2019"], Nashville_fishnet, extensive=TRUE) %>%
as.data.frame(.) %>%
rownames_to_column(var = "fishnetID") %>%
left_join(Nashville_fishnet %>%
mutate(fishnetID = as.character(fishnetID)),
., by=c("fishnetID"='fishnetID')) %>%
mutate(totalPop2019 = replace_na(totalPop2019,0)) %>%
dplyr::select(totalPop2019)
fishnetHousing11 <-
st_interpolate_aw(nashvillePop2011["totalOccupied2011"], Nashville_fishnet, extensive=TRUE) %>%
as.data.frame(.) %>%
rownames_to_column(var = "fishnetID") %>%
left_join(Nashville_fishnet %>%
mutate(fishnetID = as.character(fishnetID)),
., by=c("fishnetID"='fishnetID')) %>%
mutate(totalOccupied2011 = replace_na(totalOccupied2011,0)) %>%
dplyr::select(totalOccupied2011)
fishnetHousing19 <-
st_interpolate_aw(nashvillePop2019["totalOccupied2019"], Nashville_fishnet, extensive=TRUE) %>%
as.data.frame(.) %>%
rownames_to_column(var = "fishnetID") %>%
left_join(Nashville_fishnet %>%
mutate(fishnetID = as.character(fishnetID)),
., by=c("fishnetID"='fishnetID')) %>%
mutate(totalOccupied2019 = replace_na(totalOccupied2019,0)) %>%
dplyr::select(totalOccupied2019)
fishnetCensus <-
cbind(fishnetPopulation11,fishnetPopulation19, fishnetHousing11, fishnetHousing19) %>%
dplyr::select(totalPop2011, totalPop2019, totalOccupied2011, totalOccupied2019) %>%
mutate(popChange = (totalPop2019 - totalPop2011),
housingChange = (totalOccupied2019 - totalOccupied2011))
grid.arrange(
ggplot()+
geom_sf(data=fishnetCensus, aes(fill=q5(totalPop2011)), color=NA)+
scale_fill_manual(values=paletteMain,
labels=(qB(fishnetCensus, "totalPop2011")),
name="Quintiles")+
labs(title="Fishnet: 2011 Population")+
mapTheme(),
ggplot()+
geom_sf(data=fishnetCensus, aes(fill=q5(totalPop2019)), color=NA)+
scale_fill_manual(values=paletteMain,
labels=(qB(fishnetCensus, "totalPop2019")),
name="Quintiles")+
labs(title="Fishnet: 2019 Population")+
mapTheme(),
ggplot()+
geom_sf(data=fishnetCensus, aes(fill=q5(totalOccupied2011)), color=NA)+
scale_fill_manual(values=paletteMain,
labels=(qB(fishnetCensus, "totalOccupied2011")),
name="Quintiles")+
labs(title="Fishnet: 2011 Occupied Housing Units")+
mapTheme(),
ggplot()+
geom_sf(data=fishnetCensus, aes(fill=q5(totalOccupied2019)), color=NA)+
scale_fill_manual(values=paletteMain,
labels=(qB(fishnetCensus, "totalOccupied2019")),
name="Quintiles")+
labs(title="Fishnet: 2019 Occupied Housing Units")+
mapTheme(),
ggplot()+
geom_sf(data=fishnetCensus, aes(fill=q5(popChange)), color=NA)+
scale_fill_manual(values=paletteMain,
labels=(qB(fishnetCensus, "popChange")),
name="Quintiles")+
labs(title="Fishnet: Population Change")+
mapTheme(),
ggplot()+
geom_sf(data=fishnetCensus, aes(fill=q5(housingChange)), color=NA)+
scale_fill_manual(values=paletteMain,
labels=(qB(fishnetCensus, "housingChange")),
name="Quintiles")+
labs(title="Fishnet: Occupied Housing Units Change")+
mapTheme(),
ncol=2
)
```
# Open Data Nashville
## Building Permit Applications
```{r}
buildingPermits <- read.socrata(
"https://data.nashville.gov/resource/kqff-rxj8.json",
app_token = "j9XHS8weUKChc4dFGzE03GdIU",
email = "[email protected]",
password = "qifx!7UR2m4GG8T"
)
buildingPermits <- buildingPermits[complete.cases(buildingPermits$mapped_location.latitude),]
buildingPermits <- buildingPermits %>% dplyr::filter(address != "115 GREAT CIRCLE RD")
buildingPermits <- st_as_sf(buildingPermits,
coords = c("mapped_location.longitude", "mapped_location.latitude"), crs = 4326)
buildingPermits <- buildingPermits %>% st_transform('ESRI:103527')
ggplot()+
geom_sf(data=nashville, fill='grey', color='black', size=1)+
geom_sf(data=buildingPermits, alpha=0.4, size=1)+
labs(title="Building Permit Requests",
subtitle="Davidson County, TN (2020 to 2023)")+
mapTheme()
```
```{r}
fishnetPermits <-
dplyr::select(buildingPermits) %>%
mutate(countPermits = 1) %>%
aggregate(., Nashville_fishnet, sum) %>%
as.data.frame(.) %>%
rownames_to_column(var = "fishnetID") %>%
left_join(Nashville_fishnet %>%
mutate(fishnetID = as.character(fishnetID)),
., by=c("fishnetID"='fishnetID')) %>%
dplyr::select(countPermits)
fishnetPermits$countPermits <- ifelse(is.na(fishnetPermits$countPermits), 0, fishnetPermits$countPermits)
colorRampMain <- colorRampPalette(paletteMain)
colorRampMain5 <- colorRampMain(5)
ggplot()+
geom_sf(data=fishnetPermits, aes(fill=as.numeric(countPermits)), color=NA)+
scale_fill_viridis(option="G", direction=-1,
name="Count") +
labs(title="Fishnet: Count of Building Permits")+
mapTheme()
```
```{r}
theRasterList <- c(developed,forest,farm,wetlands,otherUndeveloped,water)
aggregatedRasters <-
aggregateRaster(theRasterList, Nashville_fishnet) %>%
dplyr::select(developed,forest,farm,wetlands,otherUndeveloped,water) %>%
mutate_if(is.numeric,as.factor)
aggregatedRasters %>%
gather(var,value,developed:water) %>%
st_cast("POLYGON") %>% #just to make sure no weird geometries slipped in
mutate(X = xyC(.)$x,
Y = xyC(.)$y) %>%
ggplot() +
geom_sf(data=nashville) +
geom_point(aes(X,Y, colour=as.factor(value))) +
facet_wrap(~var) +
scale_colour_manual(values = palette2,
labels=c("Other","Land Cover"),
name = "") +
labs(title = "Land Cover Types, 2001",
subtitle = "As fishnet centroids") +
mapTheme
```
```{r}
## install.packages("RSocrata")
## Metropolitan Transit Authority Bus Routes and remove null
bus_stop <- read.socrata(
"https://data.nashville.gov/resource/vfe9-k7vc.json",
app_token = "j9XHS8weUKChc4dFGzE03GdIU",
email = "[email protected]",
password = "qifx!7UR2m4GG8T"
) %>%
na.omit(bus_stop, cols = "geocoded_column.latitude")
# convert bus_stop to sf+.
bus_stop_sf <- bus_stop %>%
st_as_sf(coords = c("geocoded_column.longitude", "geocoded_column.latitude"), crs = 4326) %>%
st_transform(st_crs(nashville)) %>%
st_intersection(nashville)
#plot
ggplot()+
geom_sf(data=nashville, fill='white', color='black')+
geom_sf(data=bus_stop_sf,color='purple')+
labs(title="Davidson County, Tennessee")+
mapTheme
## bus_route_sf <- bus_route %>%
## st_as_sf(wkt = "the_geom.corrdiantes", crs = 4326)
```
```{r}
# plot stops with fishnet, do not know if it will work(see urban growth rmd)
ggplot() +
geom_point(data=fishnet,
aes(x=xyC(fishnet)[,1], y=xyC(fishnet)[,2],colour=lc_change),size=1.5) +
geom_sf(data=bus_stop_sf) +
scale_colour_manual(values = palette2,
labels=c("No Change","New Development")) +
labs(title = "New Development and Bus stops",
subtitle = "As fishnet centroids") +
mapTheme
```
```{r}
# measure distance to nearest bus stop
#emptyRaster <- lucc
#emptyRaster[] <- NA
# number coule be desired factor to reduce resolution
lower_res_raster <- aggregate(lucc, fact = 5)
lower_res_raster[] <- NA
bus_sf_geo_only <- bus_stop_sf %>% select(geometry)# remove all the columns except for geometry (or will be error in rasterize step)
bus_stop_raster <-
as(bus_sf_geo_only,'Spatial') %>%
rasterize(.,lower_res_raster)
bus_stop_distance <- distance(bus_stop_raster)
names(bus_stop_distance) <- "distance_stops"
busstop_Points <-
rasterToPoints(bus_stop_distance) %>%
as.data.frame() %>%
st_as_sf(coords = c("x", "y"), crs = st_crs(Nashville_fishnet))
busstop_Points_fishnet <-
aggregate(busstop_Points, Nashville_fishnet, mean) %>%
mutate(distance_stops = ifelse(is.na(distance_stops),0,distance_stops))
ggplot() +
geom_sf(data=nashville) +
geom_point(data=busstop_Points_fishnet, aes(x=xyC(busstop_Points_fishnet)[,1],
y=xyC(busstop_Points_fishnet)[,2],
colour=factor(ntile(distance_stops,5))),size=1.5) +
scale_colour_manual(values = palette5,
labels=substr(quintileBreaks(busstop_Points_fishnet,"distance_stops"),1,8),
name="Quintile\nBreaks") +
geom_sf(data=bus_stop_sf, colour = "red") +
labs(title = "Distance to Bus stops",
subtitle = "As fishnet centroids; Bus stops visualized in red") +
mapTheme
```