-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathcalculate_instability.py
487 lines (404 loc) · 14.3 KB
/
calculate_instability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
# @file calculate_instability.py
# @author Esko Kautto ([email protected])
# @updated 2016-06-20
import os
import numpy
from copy import deepcopy
import argparse
import functools
import re
import sys
from helpers import iteritems, tprint, timestamp
class LocusResults(object):
def __init__(self, locus):
self.chromosome = locus.split(':', 2)[0].strip()
self.start = int(locus.split(':', 2)[1].split('-')[0])
self.end = int(locus.split(':', 2)[1].split('-')[1])
self.__k = set()
self.__normal = {}
self.__tumor = {}
self.__up_to_date = False
self.__is_normalized = False
# end .__init__()
"""
Returns the locus in typical chr:XXXX-YYYY format.
"""
def locus(self):
return '{0}:{1}-{2}'.format(
self.chromosome,
self.start,
self.end)
# end .locus()
"""
Returns the value of self.__is_normalized.
"""
def is_normalized(self):
return self.__is_normalized
# end .is_normalized()
"""
Adds a row of data to the locus. Each input line is expected
to come in with a (tab-separated) format of:
locus k normal tumor
"""
def add(self, line):
if self.is_normalized():
tprint('Error: Cannot add more data once data has been normalized.')
return False
line = line.strip().split()
if line[0].lower() != self.locus().lower():
tprint('Error: Invalid locus specified '
+ '(expected {0}, got {1}'.format(self.locus(), line[0]))
return False
# Each line is expected to be in the format of:
# locus k normal tumor
k = int(line[1])
self.__k.add(k)
self.__normal[k] = int(line[2])
self.__tumor[k] = int(line[3])
self.up_to_date = False
return True
# end .add()
"""
Returns the k-values preset in both subsets, or if a
subset is specified, in that subset only.
"""
def k_values(self, subset = False):
k_values = set()
if subset is False:
for k in self.__k:
if (k in self.__normal and self.__normal[k] > 0.0) or \
(k in self.__tumor and self.__tumor[k] > 0.0):
k_values.add(k)
else:
if subset.upper()[0] == 'N':
# Normal data set
subset = self.__normal
elif subset.upper()[0] == 'T':
# Tumor data set
subset = self.__tumor
for k, v in iteritems(subset):
if v > 0.0:
k_values.add(k)
k_values = sorted(k_values)
return k_values
# end .k_values()
"""
Helper method that makes sure the entered subset identifier
is one of the accepted ones (N or T).
"""
@staticmethod
def __subset_check(subset):
subset = subset.upper()
if subset[0] not in ['N', 'T']:
tprint('Locus() error: Please specify (N)ormal or (T)umor as subset')
return False
return True
# end .__subset_check()
"""
Returns the total coverage/support (reads) for the locus for
either the normal or tumor.
"""
def get_support(self, subset):
if not LocusResults.__subset_check(subset):
return False
if subset.upper()[0] == 'N':
return sum(self.__normal.values())
else:
return sum(self.__tumor.values())
# end .get_support()
"""
Returns the k-number and support count values for the
specified subset.
"""
def get_values(self, subset, normalized = True):
if not LocusResults.__subset_check(subset):
return False
if subset.upper()[0] == 'N':
if self.is_normalized():
data = self.__normal_normalized
else:
data = self.__normal
else:
if self.is_normalized():
data = self.__tumor_normalized
else:
data = self.__tumor
return deepcopy(data)
# end .get_values()
"""
Normalizes the data in the locus to account for coverage depth
differences between normal and tumor samples.
"""
def normalize(self):
self.__normal_normalized = self.__normalized_subset('N', self.__normal)
self.__tumor_normalized = self.__normalized_subset('T', self.__tumor)
self.__is_normalized = True
# end .normalize()
"""
Normalizes the subset of data, so that for each subset (N/T),
the support count gets changed from a number of reads to the
percentage of reads supporting that k-value. This addresses
problems encountered due to varying coverage depth between
normal and tumor samples.
"""
def __normalized_subset(self, subset, data):
total = self.get_support(subset)
normalized = {}
for k, count in iteritems(data):
if total == 0:
normalized[k] = 0.0
else:
normalized[k] = (1.0 * count) / total
return normalized
# end .__normalized_subset()
# end LocusResults class definition.
class Metric(object):
@staticmethod
def get_k_values(locus):
return sorted(locus.k_values())
# end .get_k_values()
@staticmethod
def get_n_values(locus):
return locus.get_values('N')
# end .get_n_values
@staticmethod
def get_t_values(locus):
return locus.get_values('T')
# end .get_t_values()
@staticmethod
def get_values(locus):
k_values = Metric.get_k_values(locus)
t_values = Metric.get_t_values(locus)
n_values = Metric.get_n_values(locus)
return tuple([k_values, t_values, n_values])
# end .get_values()
@staticmethod
def get_list_sorted_by_key(d):
return [d[k] for k in sorted(d.keys())]
# end .get_list_sorted_by_key()
@staticmethod
def expand_kmer_counts(d):
new_list = []
for k, v in iteritems(d):
new_list.extend([k] * v)
return new_list
# end .expand_kmer_counts()
# end Metric class definition.
class EuclideanDistance(Metric):
@staticmethod
def get(locus):
k_values, t_values, n_values = Metric.get_values(locus)
distance_squared = 0
for k in k_values:
distance_squared += ((t_values[k] - n_values[k]) ** 2)
return numpy.sqrt(distance_squared)
# end EuclideanDistance.get()
# end EuclideanDistance class definition
class CosineDissimilarity(Metric):
@staticmethod
def get(locus):
k_values, t_values, n_values = Metric.get_values(locus)
n = []
t = []
for k in sorted(k_values):
n.append(n_values[k])
t.append(t_values[k])
n_mag = numpy.linalg.norm(n)
t_mag = numpy.linalg.norm(t)
n_dot_t = numpy.dot(n, t)
if n_mag == 0.0 or t_mag == 0.0:
# Can't calculate data with zero-magnitude vectors
return 0
similarity = n_dot_t / (n_mag * t_mag)
dist = 1 - similarity
return dist
# end CosineDissimilarity.get()
# end CosineDissimilarity class definition
class Difference(Metric):
@staticmethod
def get(locus):
k_values, t_values, n_values = Metric.get_values(locus)
diff = 0.0
for k in k_values:
diff += abs(t_values[k] - n_values[k])
return diff
# end Difference class definition
def load_loci(input_filepath):
loci = {}
with open(input_filepath, 'r') as filein:
n = 0
for line in filein:
if n is 0:
# First line (header row), skip it
n = 1
continue
line = line.strip()
locus = line.split('\t', 2)[0].strip()
if locus not in loci:
loci[locus] = LocusResults(locus)
loci[locus].add(line)
return loci
# end load_loci()
# Helper method for status output.
def status_call(threshold, value):
if value >= threshold:
return 'Unstable'
else:
return 'Stable'
# end status_call()
# Generates output for estimated sample status based on
# threshold values provided to the script.
def status_output(filepath, thresholds, difference, distance, dissimilarity):
output = []
output.append(['{:26s}'.format('Average Metric Value (Abbr)'), 'Value', 'Threshold', 'Status'])
output.append([
'Step-Wise Difference (DIF)',
round(difference, 4),
'{:<9.4f}'.format(thresholds['DIF']),
status_call(thresholds['DIF'], difference),
])
output.append([
'Euclidean Distance (EUC)',
round(distance, 4),
'{:<9.4f}'.format(thresholds['EUC']),
status_call(thresholds['EUC'], distance),
])
output.append([
'Cosine Dissimilarity (COS)',
round(dissimilarity, 4),
'{:<9.4f}'.format(thresholds['COS']),
status_call(thresholds['COS'], dissimilarity),
])
output.append(['\nNote: The authors recommend the use of the Step-Wise Difference\n' +
'metric for determining the status of the sample. Any value greater\n' +
'than or equal to the threshold is called unstable.'])
fileout = open(filepath, 'w')
for line in output:
line = '\t'.join([str(x) for x in line])
print(line)
fileout.write(line + '\n')
fileout.close()
# end status_output()
strip_chr_re = re.compile(r'^chr')
#Helper method for ordering loci
def cmp_loci(x, y):
def parse_locus(l):
pieces = l.split(':')
chr = strip_chr_re.sub("", pieces[0])
pieces = pieces[1].split('-')
start = int(pieces[0])
end = int(pieces[1])
return (chr, start, end)
x_chr, x_start, x_end = parse_locus(x)
y_chr, y_start, y_end = parse_locus(y)
if (x_chr.isdigit() and not y_chr.isdigit()):
return -1
elif (y_chr.isdigit() and not x_chr.isdigit()):
return 1
elif x_chr.isdigit():
x_chr = int(x_chr)
y_chr = int(y_chr)
if (x_chr < y_chr):
return -1
elif (x_chr > y_chr):
return 1
if (x_start < y_start):
return -1
elif (x_start > y_start):
return 1
elif (x_end < y_end):
return -1
elif (x_end > y_end):
return 1
else:
return 0
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', dest='input', type=str, required=True,
help='Input file (K-mer counts).')
parser.add_argument('-o', '--output', dest='output', type=str, required=True,
help='Output file.')
parser.add_argument('--difference-threshold', dest='dif_threshold', type=float,
help='Default difference threshold value for calling a sample unstable.')
parser.add_argument('--distance-threshold', dest='euc_threshold', type=float,
help='Default distance threshold value for calling a sample unstable.')
parser.add_argument('--dissimilarity-threshold', dest='cos_threshold', type=float,
help='Default dissimilarity threshold value for calling a sample unstable.')
args = parser.parse_args()
input_filepath = os.path.abspath(args.input)
if not os.path.isfile(input_filepath):
tprint('Error! Input file {0} does not exist.'.format(input_filepath))
exit(1)
# Make sure default threshold values have been specified.
thresholds = {}
if args.dif_threshold is None:
tprint('Error: Default difference threshold must be specified!')
exit(1)
else:
thresholds['DIF'] = float(args.dif_threshold)
if args.euc_threshold is None:
tprint('Error: Default distance threshold must be specified!')
exit(1)
else:
thresholds['EUC'] = float(args.euc_threshold)
if args.cos_threshold is None:
tprint('Error: Default dissimilarity threshold must be specified!')
exit(1)
else:
thresholds['COS'] = float(args.cos_threshold)
output_filepath = os.path.abspath(args.output)
status_filepath = output_filepath + '.status'
loci = load_loci(input_filepath)
fileout = open(output_filepath, 'w')
line = '\t'.join(['Locus', 'Normal_Reads', 'Tumor_Reads', 'Difference', 'Distance', 'Dissimilarity'])
fileout.write(line + '\n')
# Iterate through all the results to generate the output. As part of the
# loop, count the weighted values for each metric.
values = {'difference': [], 'distance': [] , 'dissimilarity': []}
ordered_loci = None
if sys.version_info > (3, 0):
ordered_loci = sorted(loci.keys(), key=functools.cmp_to_key(cmp_loci))
else:
ordered_loci = sorted(loci.keys(), cmp=cmp_loci)
for l in ordered_loci:
locus = loci[l]
# Calculate post-normalization metrics
locus.normalize()
difference = Difference.get(locus)
distance = EuclideanDistance.get(locus)
dissimilarity = CosineDissimilarity.get(locus)
# Generate output line.
line = '\t'.join([str(x) for x in [
locus.locus(),
locus.get_support('N'),
locus.get_support('T'),
round(difference,4),
round(distance,4),
round(dissimilarity, 4)]])
# Values will be used to calculate final averaged values.
values['difference'].append(difference)
values['dissimilarity'].append(dissimilarity)
values['distance'].append(distance)
fileout.write(line + '\n')
# end of per-locus for loop
if len(values['difference']) > 0:
# Generate output for final average scores.
avg_difference = numpy.mean(values['difference'])
avg_distance = numpy.mean(values['distance'])
avg_dissimilarity = numpy.mean(values['dissimilarity'])
line = '\t'.join([str(x) for x in [
'Average',
'-',
'-',
round(avg_difference,4),
round(avg_distance,4),
round(avg_dissimilarity, 4)]])
fileout.write(line + '\n')
output_status_block = True
else:
output_status_block = False
fileout.close()
if output_status_block:
status_output(status_filepath, thresholds, avg_difference, avg_distance, avg_dissimilarity)
# Done
exit(0)