-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmakeQuant.R
128 lines (106 loc) · 3.79 KB
/
makeQuant.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
library('TxDb.Hsapiens.UCSC.hg38.knownGene')
library('DEGobj.utils')
library('quantiseqr')
library("AnnotationDbi")
library("org.Hs.eg.db")
rna = read.csv('RNAseq.csv', row.names = 1)
tx = TxDb.Hsapiens.UCSC.hg38.knownGene
genelen = transcripts(tx, columns=c("tx_id", "tx_name", "gene_id"))
genelen$symbol = mapIds(org.Hs.eg.db,
keys=as.character(genelen$gene_id),
column="SYMBOL",
keytype="ENTREZID",
multiVals="first")
genelen2 = as.data.frame(genelen)
genelen2 = genelen2[!(is.na(names(genelen2$symbol))), ]
genelen2 = genelen2[genelen2$symbol %in% rownames(rna), ]
ma = matrix(NA, ncol=2, nrow = 1)
for (x in unique(genelen2$symbol)){
set = genelen2[genelen2$symbol == x, ]
ma = rbind(ma, cbind(x, max(set$width)))
}
ma = ma[-1, ]
ma = as.data.frame(ma)
colnames(ma) = c('Gene_Symbol', 'Length')
ma$Length = as.numeric(as.character(ma$Length))
rna = rna[rownames(rna) %in% ma$Gene_Symbol, ]
ma = ma[match(rownames(rna), ma$Gene_Symbol), ]
rnatmp = convertCounts(as.matrix(rna), 'TPM', ma$Length)
rnatmp = as.data.frame(rnatmp)
ti_racle <- quantiseqr::run_quantiseq(
expression_data = rnatmp,
signature_matrix = "TIL10",
is_arraydata = FALSE,
is_tumordata = TRUE,
scale_mRNA = TRUE
)
key <- read.csv("LOF.GOF.key.csv")
mut <- read.csv('mut.stat.key.csv')
key2 = cbind(key$V1, key$func2)
colnames(key2) = c('V1', 'V2')
coldata = rbind(key2, cbind(mut$V1[mut$V2 == 'control'],
mut$V2[mut$V2 == 'control']))
coldata = as.data.frame(coldata)
coldata = coldata[gsub('\\-', ".", coldata[, 1]) %in% ti_racle$Sample, ]
coldata = coldata[match(ti_racle$Sample, gsub('\\-', ".", coldata[, 1])), ]
quant = cbind(ti_racle[2:ncol(ti_racle)], coldata$V2)
colnames(quant)[ncol(quant)] = 'Function'
quantm = melt(quant, id.vars = c('Function'))
quantm$value = as.numeric(as.character(quantm$value))
agquant = aggregate(. ~ variable + Function, quantm, mean)
maov = manova(as.matrix(quant[, 2:(ncol(quant)-1)]) ~ quant$Function, data = quant)
pval = summary(maov)
pval = pval$stats[1, 6]
if (pval < .05){
ma = matrix(NA, 1, 3)
for (x in unique(quantm$variable)){
set = quant[, colnames(quant) %in% c(x, 'Function')]
colnames(set) = c('Var', "Fun")
set = as.data.frame(set)
set$Var = as.numeric(as.character(set$Var))
k = kruskal.test(set[, 1], set[, 2])
k = k$p.value
if (k < .05){
post.hoc = c()
p = pairwise.wilcox.test(set[, 1], set[, 2])
p = p$p.value
id = which(colnames(p) == 'control')
p = p[, id]
out = names(p)[which(p < .05)]
ag = aggregate(. ~ Fun, set, mean)
for (y in out){
if (ag[which(ag[, 1] == y), 2] > ag[which(ag[, 1] == 'control'), 2]){
post.hoc = c(post.hoc, paste0(y, ':greater'))
} else {
post.hoc = c(post.hoc, paste0(y, ':lesser'))
}
}
post.hoc = paste0(post.hoc, collapse = ";")
} else {
post.hoc = ""
}
ma = rbind(ma, cbind(x, k, post.hoc))
}
}
ma = ma[-1,]
ma = ma[ma[, 3] != "", ]
l = list()
for (x in 1:length(ma[, 1])){
my_comparisons <- list( c("control", "unknown"), c("control", "LOF"),c("control", "GOF") )
new = quantm[quantm$variable == ma[x, 1], ]
mx = max(new[, 3])
l[[x]]= ggplot(new, aes(x = Function, y= value)) +
geom_violin(aes(fill = Function)) +
facet_wrap(~ variable) +
stat_compare_means(comparisons = my_comparisons, label.y = c(mx, mx + .05, mx + .1)) +
stat_compare_means(label.y = mx + .2) + theme_bw()
}
mx = length(l) + 1
l[[mx]] = ggplot(agquant, aes(fill = variable, x = Function, y = value)) +
geom_bar(position="stack", stat="identity") +
annotate(geom="text", x=1, y=1.05, label=paste0('Manova: ', round(pval, 3))) + theme_bw()
pdf('QuantiseqRes.pdf')
for (x in l){
print(x)
}
dev.off()