-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
191 lines (148 loc) · 6.97 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch import Tensor
from typing import Tuple
from torchvision.models import resnet18, resnet50
from torchvision.models import ResNet18_Weights, ResNet50_Weights
class MKGE(nn.Module):
def __init__(self, args, num_ent_uid, target_list, device, all_locs=None, num_habitat=None, all_timestamps=None):
super(MKGE, self).__init__()
self.args = args
self.num_ent_uid = num_ent_uid
self.num_relations = 4
self.ent_embedding = torch.nn.Embedding(self.num_ent_uid, args.embedding_dim, sparse=False)
self.rel_embedding = torch.nn.Embedding(self.num_relations, args.embedding_dim, sparse=False)
if self.args.kg_embed_model == 'conve':
self.inp_drop = torch.nn.Dropout(args.input_drop)
self.hidden_drop = torch.nn.Dropout(args.hidden_drop)
self.feature_map_drop = torch.nn.Dropout2d(args.feat_drop)
self.emb_dim1 = args.embedding_shape1 # important parameter for ConvE
self.emb_dim2 = args.embedding_dim // self.emb_dim1
self.conv1 = torch.nn.Conv2d(1, 32, (3, 3), 1, 0, bias=args.use_bias)
self.bn0 = torch.nn.BatchNorm2d(1)
self.bn1 = torch.nn.BatchNorm2d(32)
self.bn2 = torch.nn.BatchNorm1d(args.embedding_dim)
self.fc = torch.nn.Linear(args.hidden_size, args.embedding_dim)
self.location_embedding = MLP(args.location_input_dim, args.embedding_dim, args.mlp_location_numlayer)
self.time_embedding = MLP(args.time_input_dim, args.embedding_dim, args.mlp_time_numlayer)
if self.args.img_embed_model == 'resnet50':
self.image_embedding = resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
self.image_embedding.fc = nn.Linear(2048, args.embedding_dim)
else:
self.image_embedding = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
self.image_embedding.fc = nn.Linear(512, args.embedding_dim)
self.target_list = target_list
if all_locs is not None:
self.all_locs = all_locs.to(device)
if all_timestamps is not None:
self.all_timestamps = all_timestamps.to(device)
self.args = args
self.device = device
self.init()
def init(self):
nn.init.xavier_uniform_(self.ent_embedding.weight.data)
nn.init.xavier_uniform_(self.rel_embedding.weight.data)
nn.init.xavier_uniform_(self.image_embedding.fc.weight.data)
def forward(self, h, r, t):
emb_h = self.batch_embedding_concat_h(h)
emb_r = self.rel_embedding(r.squeeze(-1))
if self.args.kg_embed_model == 'distmult':
emb_t = self.batch_embedding_concat_h(t)
score = torch.sum(emb_h * emb_r * emb_t, -1)
elif self.args.kg_embed_model == 'conve':
e1_embedded = e1_embedded.view(-1, 1, self.emb_dim1, self.emb_dim2) # [batch, 1, emb_dim1, emb_dim2]
rel_embedded = rel_embedded.view(-1, 1, self.emb_dim1, self.emb_dim2) # [batch, 1, emb_dim1, emb_dim2]
stacked_inputs = torch.cat([e1_embedded, rel_embedded], 2) # [batch, 1, 2*emb_dim1, emb_dim2]
stacked_inputs = self.bn0(stacked_inputs)
x = self.inp_drop(stacked_inputs)
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.feature_map_drop(x)
x = x.view(x.shape[0], -1)
x = self.fc(x)
x = self.hidden_drop(x)
x = self.bn2(x)
x = F.relu(x)
score = x * t
else:
raise NotImplementedError
return score
# @profile
def forward_ce(self, h, r, t, triple_type=None):
emb_h = self.batch_embedding_concat_h(h) # [batch, hid]
emb_r = self.rel_embedding(r.squeeze(-1)) # [batch, hid]
if self.args.kg_embed_model == 'distmult':
emb_hr = emb_h * emb_r # [batch, hid]
elif self.args.kg_embed_model == 'conve':
emb_h = emb_h.view(-1, 1, self.emb_dim1, self.emb_dim2) # [batch, 1, emb_dim1, emb_dim2]
emb_r = emb_r.view(-1, 1, self.emb_dim1, self.emb_dim2) # [batch, 1, emb_dim1, emb_dim2]
stacked_inputs = torch.cat([emb_h, emb_r], 2) # [batch, 1, 2*emb_dim1, emb_dim2]
stacked_inputs = self.bn0(stacked_inputs)
x = self.inp_drop(stacked_inputs)
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.feature_map_drop(x)
x = x.view(x.shape[0], -1)
x = self.fc(x)
x = self.hidden_drop(x)
x = self.bn2(x)
emb_hr = F.relu(x)
else:
raise NotImplementedError
if triple_type == ('image', 'id'):
score = torch.mm(emb_hr, self.ent_embedding.weight[self.target_list.squeeze(-1)].T) # [batch, n_ent]
elif triple_type == ('id', 'id'):
score = torch.mm(emb_hr, self.ent_embedding.weight.T) # [batch, n_ent]
elif triple_type == ('image', 'location'):
loc_emb = self.location_embedding(self.all_locs) # computed for each batch
score = torch.mm(emb_hr, loc_emb.T)
elif triple_type == ('image', 'time'):
time_emb = self.time_embedding(self.all_timestamps)
score = torch.mm(emb_hr, time_emb.T)
else:
raise NotImplementedError
return score
def batch_embedding_concat_h(self, e1):
e1_embedded = None
if len(e1.size())==1 or e1.size(1) == 1: # uid
# print('ent_embedding = {}'.format(self.ent_embedding.weight.size()))
e1_embedded = self.ent_embedding(e1.squeeze(-1))
elif e1.size(1) == 15: # time
e1_embedded = self.time_embedding(e1)
elif e1.size(1) == 2: # GPS
e1_embedded = self.location_embedding(e1)
elif e1.size(1) == 3: # Image
e1_embedded = self.image_embedding(e1)
return e1_embedded
class MLP(nn.Module):
def __init__(self,
input_dim,
output_dim,
num_layers=3,
p_dropout=0.0,
bias=True):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.p_dropout = p_dropout
step_size = (input_dim - output_dim) // num_layers
hidden_dims = [output_dim + (i * step_size)
for i in reversed(range(num_layers))]
mlp = list()
layer_indim = input_dim
for hidden_dim in hidden_dims:
mlp.extend([nn.Linear(layer_indim, hidden_dim, bias),
nn.Dropout(p=self.p_dropout, inplace=True),
nn.PReLU()])
layer_indim = hidden_dim
self.mlp = nn.Sequential(*mlp)
# initialize weights
self.init()
def forward(self, x):
return self.mlp(x)
def init(self):
for param in self.parameters():
nn.init.uniform_(param)