-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
147 lines (107 loc) · 5.11 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import torch
import numpy as np
import re
from math import pi
from re import match
from PIL import Image
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
import json
import pickle
import pandas as pd
_DEFAULT_IMAGE_TENSOR_NORMALIZATION_MEAN = [0.485, 0.456, 0.406]
_DEFAULT_IMAGE_TENSOR_NORMALIZATION_STD = [0.229, 0.224, 0.225]
class iWildCamOTTDataset(Dataset):
def __init__(self, datacsv, mode, args, entity2id, target_list, head_type=None, tail_type=None):
super(iWildCamOTTDataset, self).__init__()
if head_type is not None and tail_type is not None:
self.datacsv = datacsv.loc[(datacsv['datatype_h'] == head_type) & (datacsv['datatype_t'] == tail_type) & (
datacsv['split'] == mode), :]
print("length of {}2{} dataset = {}".format(head_type, tail_type, len(self.datacsv)))
else:
self.datacsv = datacsv.loc[datacsv['split'] == mode, :]
print("length of alltype dataset = {}".format(len(self.datacsv)))
self.args = args
self.mode = mode
self.entity2id = entity2id
self.target_list = target_list
self.entity_to_species_id = {self.target_list[i, 0].item():i for i in range(len(self.target_list))}
# print(self.entity_to_species_id)
if args.use_data_subset:
train_indices = np.random.choice(np.arange(len(self.datacsv)), size=args.subset_size, replace=False)
self.datacsv = self.datacsv.iloc[train_indices]
if head_type == 'image' and tail_type == 'location':
datacsv_loc = datacsv.loc[(datacsv['datatype_h'] == 'image') & (datacsv['datatype_t'] == 'location')]
self.location_to_id = {}
for i in range(len(datacsv_loc)):
loc = datacsv_loc.iloc[i, 3]
assert loc[0] == '['
assert loc[-1] == ']'
# print(loc)
if loc not in self.location_to_id:
self.location_to_id[loc] = len(self.location_to_id)
self.all_locs = torch.stack(list(map(lambda x:getNumber(x), self.location_to_id.keys())))
self.all_timestamps = None
if head_type == 'image' and tail_type == 'time':
datacsv_time = datacsv.loc[(datacsv['datatype_h'] == 'image') & (datacsv['datatype_t'] == 'time')]
self.time_to_id = {}
for i in range(len(datacsv_time)):
time = datacsv_time.iloc[i, 3]
_, hour = get_separate_time(time)
_HOUR_RAD = 2 * pi / 24
h1, h2 = point(hour, _HOUR_RAD)
time = hour
if time not in self.time_to_id:
self.time_to_id[time] = len(self.time_to_id)
self.all_timestamps = torch.stack(list(map(lambda x:torch.tensor(x), self.time_to_id.keys())))
if len(self.all_timestamps.size())==1:
self.all_timestamps = self.all_timestamps.unsqueeze(-1)
def __len__(self):
return len(self.datacsv)
def __getitem__(self, idx):
head_type = self.datacsv.iloc[idx, 1]
tail_type = self.datacsv.iloc[idx, 4]
head = self.datacsv.iloc[idx, 0]
relation = self.datacsv.iloc[idx, 2]
tail = self.datacsv.iloc[idx, 3]
# for tail extract
h = None
t = None
if tail_type == "id":
if head_type in ["image", "location"]:
t = torch.tensor([self.entity_to_species_id[self.entity2id[str(int(float(tail)))]]], dtype=torch.long).squeeze(-1)
else:
t = torch.tensor([self.entity2id[str(int(float(tail)))]], dtype=torch.long).squeeze(-1)
elif tail_type == "location":
t = self.location_to_id[tail]
elif tail_type == "time":
tail = datatime_divide(tail, self.args)
t = self.time_to_id[tail]
# for head extract
if head_type == "id":
h = torch.tensor([self.entity2id[str(int(float(head)))]], dtype=torch.long).squeeze(-1)
elif head_type == "image":
img = Image.open(os.path.join(self.args.img_dir, head)).convert('RGB')
transform_steps = transforms.Compose([transforms.Resize((448, 448)), transforms.ToTensor(), transforms.Normalize(_DEFAULT_IMAGE_TENSOR_NORMALIZATION_MEAN, _DEFAULT_IMAGE_TENSOR_NORMALIZATION_STD)])
h = transform_steps(img)
elif head_type == "location":
h = getNumber(head)
# for r extract
r = torch.tensor([int(relation)])
return h, r, t
def getNumber(x):
return torch.tensor(np.fromstring(x[1:-1], dtype=float, sep=' '), dtype=torch.float)
def get_separate_time(item):
m = match(r"(.*)-(.*)-(.*) (.*):(.*):(\d{2})", item)
years, month, day, hour, minutes, second = m.groups()
return float(month), float(hour)
def datatime_divide(timestamp, args):
month, hour = get_separate_time(timestamp)
_HOUR_RAD = 2 * pi / 24
h1, h2 = point(hour, _HOUR_RAD)
return hour
def point(m, rad):
from math import sin, cos
# place on circle
return sin(m * rad), cos(m * rad)