-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathvideo_processing_opencv.py
291 lines (247 loc) · 11.1 KB
/
video_processing_opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import traceback
import cv2
import numpy as np
import sys
from datetime import datetime
import os
# Different OpenCV algorithms
# Status: working
skip_frames = 30*4
previous_grey = None
hsv = None
hsv_roi = None
roi_hist = None
term_criteria = None
x = 200
y = 350
w = 150
h = 150
frameCnt = 0
def create_blank(width, height, rgb_color=(0, 0, 0)):
"""Create new image(numpy array) filled with certain color in RGB"""
# Create black blank image
image = np.zeros((height, width, 3), np.uint8)
# Since OpenCV uses BGR, convert the color first
color = tuple(reversed(rgb_color))
# Fill image with color
image[:] = color
return image
black = (0, 0, 0)
def init_model(transform):
if transform == 'orb':
featuresDetector = cv2.ORB_create(nfeatures=1500)
return featuresDetector, None
elif transform == 'sift':
try:
sift = cv2.xfeatures2d.SIFT_create()
except:
sift = cv2.SIFT_create()
return sift, None
elif transform == 'fast':
fast = cv2.FastFeatureDetector_create()
return fast, None
elif transform == 'lkt':
lk_params = dict( winSize = (15, 15),#(15, 15),
maxLevel = 3,#2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 3, 0.01))
feature_params = dict( maxCorners = 5000, #500,
qualityLevel = 0.1, #0.3,
minDistance = 3, #7,
blockSize = 3 ) #7 )
track_len = 25
detect_interval = 15
tracks1 = []
return (lk_params,feature_params,track_len,detect_interval,tracks1), None
return None, None
def process_image(transform,processing_model,img):
global previous_grey, hsv, skip_frames,hsv_roi,roi_hist, term_criteria,x, y, w, h,frameCnt
tracks = []
frameCnt = frameCnt+1
try:
if transform == 'edges':
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)
elif transform == 'cartoon':
# prepare color
img_color = cv2.pyrDown(cv2.pyrDown(img))
for _ in range(6):
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
img_color = cv2.pyrUp(cv2.pyrUp(img_color))
# prepare edges
img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img_edges = cv2.adaptiveThreshold(
cv2.medianBlur(img_edges, 7), 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 9, 2)
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
# combine color and edges
img = cv2.bitwise_and(img_color, img_edges)
elif transform == 'detect-color':
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Every color except white
low = np.array([0, 42, 0])
high = np.array([179, 255, 255])
mask = cv2.inRange(hsv, low, high)
new_img = cv2.bitwise_and(img, img, mask=mask)
img = new_img
elif transform == 'contours':
image = img #cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
blurred_frame = image #cv2.GaussianBlur(image, (5, 5), 0)
gray = cv2.cvtColor(blurred_frame, cv2.COLOR_RGB2GRAY)
_, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
tracks = contours
img = cv2.drawContours(img, contours, -1, (0, 255, 0), 3)
# for contour in contours:
# area = cv2.contourArea(contour)
# if area > 500:
# cv2.drawContours(img, contour, -1, (0, 255, 0), 3)
elif transform == 'dense-of':
if previous_grey is None:
previous_grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
hsv = np.zeros_like(img)
hsv[...,1] = 255
else:
img1 = img.copy()
try:
next = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
previous_grey,img = drawDenseOpticalFlow(previous_grey,next,hsv)
except:
img = img1
previous_grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
hsv = np.zeros_like(img)
hsv[...,1] = 255
elif transform == 'sift':
tracks, img = drawSIFT(img,processing_model)
elif transform == 'fast':
tracks, img = drawFAST(img,processing_model)
elif transform == 'orb':
featuresDetector = processing_model
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
featuresDetector = cv2.ORB_create(nfeatures=1500)
keypoints, descriptors = featuresDetector.detectAndCompute(gray, None)
tracks = keypoints
img = cv2.drawKeypoints(img, keypoints, None)
elif transform == 'mean-shift':
# perform mean shift tracking
try:
if skip_frames>0:
skip_frames=skip_frames-1
if(skip_frames==0):
roi = img[y: y + h, x: x + w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
roi_hist = cv2.calcHist([hsv_roi], [0], None, [180], [0, 180])
roi_hist = cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
term_criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)
else:
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)
_, track_window = cv2.meanShift(mask, (x, y, w, h), term_criteria)
x, y, w, h = track_window
except Exception as ex:
print(ex)
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
elif transform == 'rotate':
# rotate image
rows, cols, _ = img.shape
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frameCnt * 5, 1)
img = cv2.warpAffine(img, M, (cols, rows))
elif transform == 'lkt':
(lk_params,feature_params,track_len,detect_interval,tracks1) = processing_model
# frame = img
frame_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
vis = img
if len(tracks1) > 0:
# try:
try:
img0, img1 = previous_grey, frame_gray
p0 = np.float32([tr[-1] for tr in tracks1]).reshape(-1, 1, 2)
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
d = abs(p0-p0r).reshape(-1, 2).max(-1)
good = d < 1
new_tracks = []
for tr, (x, y), good_flag in zip(tracks1, p1.reshape(-1, 2), good):
if not good_flag:
continue
tr.append((x, y))
if len(tr) > track_len:
del tr[0]
new_tracks.append(tr)
# cv2.circle(vis, (int(x), int(y)), 2, (0, 255, 0), -1)
cv2.circle(vis, (int(x), int(y)), 3, (0,0, 255), 2)
tracks1 = new_tracks
cv2.polylines(vis, [np.int32(tr) for tr in tracks1], False, (0, 255, 0))
# draw_str(vis, (20, 20), 'track count: %5d FPS = %0.2f' % (len(tracks1), fpsValue))
# except:
# # tracks1 = []
# pass
except:
tracks1 = []
if frameCnt % detect_interval == 0:
mask = np.zeros_like(frame_gray)
mask[:] = 255
for x, y in [np.int32(tr[-1]) for tr in tracks1]:
cv2.circle(mask, (x, y), 5, 0, -1)
p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
if p is not None:
for x, y in np.float32(p).reshape(-1, 2):
tracks1.append([(x, y)])
previous_grey = frame_gray
img = vis
tracks = tracks1
if transform == 'sbs':
# black = np.zeros((900,1600), dtype = "uint8")
# h,w = black.shape
# img = cv2.cvtColor(black,cv2.COLOR_GRAY2RGB)
img = img
elif transform == 'sbs-rg':
black = np.zeros((900,1600), dtype = "uint8")
h,w = black.shape
#extract blue channel
# blue_channel = img[:,:,0]
#extract green channel
green_channel = img[:,:,1]
#extract red channel
red_channel = img[:,:,2]
ih,iw = red_channel.shape
# print(h,w, ih,iw)
# temp = np.concatenate((green_channel,red_channel), axis = 1)
# h,w = black.shape
diff = 0
black[h//2-ih//2 : h//2 + ih//2, w//2 - iw - diff : w//2 - diff] = green_channel #red_channel #green_channel
black[h//2-ih//2 : h//2 + ih//2, w//2 + diff : w//2 + iw + diff] = red_channel
# black[119:(h-121), 119:w-121] = temp
img = cv2.cvtColor(black,cv2.COLOR_GRAY2RGB)
except Exception as e:
track = traceback.format_exc()
print(track)
print("OpenCV Exception",e)
pass
return tracks,img
def drawSIFT(image,sift):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
(keypoints, descs) = sift.detectAndCompute(gray, None)
#Detect key points #
keypoints = sift.detect(gray, None)
#print("Number of keypoints Detected: ", len(keypoints))
# Draw rich key points on input image
image = cv2.drawKeypoints(image, keypoints, 0,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
return image
def drawFAST(image, fast):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
keypoints = fast.detect(gray, None)
#print ("Number of keypoints Detected: ", len(keypoints))
# Draw rich keypoints on input image
image = cv2.drawKeypoints(image, keypoints,0, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
return keypoints, image
def drawDenseOpticalFlow(previous_grey,next,hsv):
# Computes the dense optical flow using the Gunnar Farneback’s algorithm
flow = cv2.calcOpticalFlowFarneback(previous_grey, next,
None, 0.5, 3, 15, 3, 5, 1.2, 0)
# use flow to calculate the magnitude (speed) and angle of motion
# use these values to calculate the color to reflect speed and angle
magnitude, angle = cv2.cartToPolar(flow[...,0], flow[...,1])
hsv[...,0] = angle * (180 / (np.pi/2))
hsv[...,2] = cv2.normalize(magnitude, None, 0, 255, cv2.NORM_MINMAX)
final = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return next,final