forked from isl-org/MiDaS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
188 lines (155 loc) · 5.73 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""Compute depth maps for images in the input folder.
"""
import os
import glob
import torch
import utils
import cv2
import argparse
from torchvision.transforms import Compose
from midas.dpt_depth import DPTDepthModel
from midas.midas_net import MidasNet
from midas.midas_net_custom import MidasNet_small
from midas.transforms import Resize, NormalizeImage, PrepareForNet
def run(input_path, output_path, model_path, model_type="large", optimize=True):
"""Run MonoDepthNN to compute depth maps.
Args:
input_path (str): path to input folder
output_path (str): path to output folder
model_path (str): path to saved model
"""
print("initialize")
# select device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: %s" % device)
# load network
if model_type == "dpt_large": # DPT-Large
model = DPTDepthModel(
path=model_path,
backbone="vitl16_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid": #DPT-Hybrid
model = DPTDepthModel(
path=model_path,
backbone="vitb_rn50_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode="minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "midas_v21":
model = MidasNet(model_path, non_negative=True)
net_w, net_h = 384, 384
resize_mode="upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
elif model_type == "midas_v21_small":
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True})
net_w, net_h = 256, 256
resize_mode="upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
else:
print(f"model_type '{model_type}' not implemented, use: --model_type large")
assert False
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method=resize_mode,
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
model.eval()
if optimize==True:
# rand_example = torch.rand(1, 3, net_h, net_w)
# model(rand_example)
# traced_script_module = torch.jit.trace(model, rand_example)
# model = traced_script_module
if device == torch.device("cuda"):
model = model.to(memory_format=torch.channels_last)
model = model.half()
model.to(device)
# get input
img_names = glob.glob(os.path.join(input_path, "*"))
num_images = len(img_names)
# create output folder
os.makedirs(output_path, exist_ok=True)
print("start processing")
for ind, img_name in enumerate(img_names):
print(" processing {} ({}/{})".format(img_name, ind + 1, num_images))
# input
img = utils.read_image(img_name)
img_input = transform({"image": img})["image"]
# compute
with torch.no_grad():
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
if optimize==True and device == torch.device("cuda"):
sample = sample.to(memory_format=torch.channels_last)
sample = sample.half()
prediction = model.forward(sample)
prediction = (
torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
)
.squeeze()
.cpu()
.numpy()
)
# output
filename = os.path.join(
output_path, os.path.splitext(os.path.basename(img_name))[0]
)
utils.write_depth(filename, prediction, bits=2)
print("finished")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_path',
default='input',
help='folder with input images'
)
parser.add_argument('-o', '--output_path',
default='output',
help='folder for output images'
)
parser.add_argument('-m', '--model_weights',
default=None,
help='path to the trained weights of model'
)
parser.add_argument('-t', '--model_type',
default='dpt_large',
help='model type: dpt_large, dpt_hybrid, midas_v21_large or midas_v21_small'
)
parser.add_argument('--optimize', dest='optimize', action='store_true')
parser.add_argument('--no-optimize', dest='optimize', action='store_false')
parser.set_defaults(optimize=True)
args = parser.parse_args()
default_models = {
"midas_v21_small": "weights/midas_v21_small-70d6b9c8.pt",
"midas_v21": "weights/midas_v21-f6b98070.pt",
"dpt_large": "weights/dpt_large-midas-2f21e586.pt",
"dpt_hybrid": "weights/dpt_hybrid-midas-501f0c75.pt",
}
if args.model_weights is None:
args.model_weights = default_models[args.model_type]
# set torch options
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# compute depth maps
run(args.input_path, args.output_path, args.model_weights, args.model_type, args.optimize)