-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocess.py
207 lines (161 loc) · 6.79 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import sys
sys.path.append('utils')
sys.path.append('g2p')
import os
import torch
import torchaudio
from multiprocessing import Pool
from functools import partial
import g2p.korean_g2p
import utils.dsp
from utils.config_parser import Config
from utils.file_utils import create_path
from utils.midi_utils import load_midi
def load_text(filename):
with open(filename, 'r', encoding='utf-8') as text_file:
text = text_file.read().replace(' ', '').replace('\n', '')
text = g2p.korean_g2p.encode(text)
return text
def get_phoneme_duration(phone, note_duration, length_c):
duration = []
if note_duration < phone.num():
length_c = 0
elif note_duration <= phone.num()*length_c:
length_c = max(note_duration//phone.num() - 1, 1)
if phone.ons is not None:
duration.append(length_c)
if phone.nuc is not None:
length_v = note_duration - (phone.num() - 1)*length_c
duration.append(length_v)
if phone.cod is not None:
duration.append(length_c)
return torch.tensor(duration)
def align_label(text, note, config):
frame_rate = config.sample_rate/config.hop_size
aligned_length = utils.dsp.time2frame(note[-1][0] + note[-1][2], frame_rate=frame_rate)
text_aligned = torch.zeros(aligned_length, dtype=torch.long)
note_aligned = torch.zeros(aligned_length, dtype=torch.long)
for i in range(len(note)):
start = utils.dsp.time2frame(note[i][0], frame_rate=frame_rate)
end = utils.dsp.time2frame(note[i][0] + note[i][2], frame_rate=frame_rate)
duration = get_phoneme_duration(text[i], end - start, config.length_c)
phone = torch.tensor(text[i].to_list())
text_aligned[start:end] = phone.repeat_interleave(duration, dim=0)
note_aligned[start:end] = note[i][1] - config.min_note
return text_aligned, note_aligned
def files4train(filename, config):
basename = os.path.basename(filename)
type_list = ['txt', 'mid', 'wav']
file_list = []
for t in type_list:
if config.file_structure == 1:
f = os.path.join(config.dataset_path, basename + '.' + t)
elif config.file_structure == 2:
f = os.path.join(config.dataset_path, t, basename + '.' + t)
else:
raise AssertionError("There is no file structure type for %s" % (config.file_structure))
file_list.append(f)
return file_list
def files4infer(filename, config):
basename = os.path.basename(filename).replace('.txt', '')
filepath = os.path.dirname(filename)
if config.file_structure == 2:
filepath = '/'.join(filepath.split('/')[:-1])
type_list = ['txt', 'mid']
file_list = []
for t in type_list:
if config.file_structure == 1:
f = os.path.join(filepath, basename + '.' + t)
elif config.file_structure == 2:
f = os.path.join(filepath, t, basename + '.' + t)
else:
raise AssertionError("There is no file structure type for %s" % (config.file_structure))
file_list.append(f)
return file_list
def zero_pad(x, pad_length):
pad = x.new_zeros(pad_length)
return torch.cat((x, pad))
def preprocess(filename, set_type, config):
infer = set_type == 'infer'
if not infer:
txt_file, mid_file, wav_file = files4train(filename, config)
else:
txt_file, mid_file = files4infer(filename, config)
text = load_text(txt_file)
note = load_midi(mid_file)
text, note = align_label(text, note, config)
# Zero pad to make 1 more iteration
data_stride = config.spec_length
if text.size(0)%data_stride != 0:
pad_length = (text.size(0)//data_stride + 1)*data_stride - text.size(0)
text = zero_pad(text, pad_length)
note = zero_pad(note, pad_length)
num_stride = text.size(0)//data_stride
if not infer:
wave = utils.dsp.load(wav_file, config.sample_rate)
spec = utils.dsp.spectrogram(wave, config).cpu().transpose(0, 1) # D x T -> T x D
spec = torch.cat((torch.zeros(config.prev_length, config.fft_size//2 + 1), spec))
min_length = min(text.size(0), spec.size(0))
data_stride = config.data_stride
num_stride = (min_length - (config.spec_length + config.prev_length))//data_stride
data_list = []
for i in range(num_stride):
text_start = i*data_stride
t = text[text_start:text_start + config.spec_length]
n = note[text_start:text_start + config.spec_length]
data = dict(text=t, note=n)
if not infer:
spec_start = i*data_stride + config.prev_length
s = spec[spec_start:spec_start + config.spec_length]
s_prev = spec[spec_start - config.prev_length:spec_start]
data = dict(text=t, note=n, spec_prev=s_prev, spec=s)
data_list.append(data)
if not infer:
basename = os.path.basename(filename)
savename = os.path.join(config.feature_path, set_type, basename + '.pt')
torch.save(data_list, savename)
print(basename)
return data_list
def read_file_list(filename):
with open(filename) as f:
file_list = f.read().split('\n')
return file_list
def make_indices(path):
num_features = []
for f in sorted(os.listdir(path)):
num_feature = len(torch.load(os.path.join(path, f)))
num_features.append(num_feature)
num_features = torch.tensor(num_features)
file_indices = torch.cumsum(num_features, dim=0)
return file_indices
def main():
config = Config()
config_basename = os.path.basename(config.config[0])
print("Configuration file: \'%s\'" % (config_basename))
set_list = ['train', 'valid']
file_list = {}
# Creating Path for Features
create_path(config.feature_path, action='overwrite', verbose=False)
for set_type in set_list:
path = os.path.join(config.feature_path, set_type)
create_path(path, action='overwrite')
list_file = set_type + '_list.txt'
file_list[set_type] = read_file_list(os.path.join(config.dataset_path, list_file))
# Extracting Features
if config.num_proc > 1:
if config.use_cpu is False:
raise AssertionError("You can not use GPU with multiprocessing.")
p = Pool(config.num_proc)
for set_type in set_list:
p.map(partial(preprocess, set_type=set_type, config=config), file_list[set_type])
else:
for set_type in set_list:
[preprocess(f, set_type=set_type, config=config) for f in file_list[set_type]]
# Creating Files Indices
for set_type in set_list:
path = os.path.join(config.feature_path, set_type)
file_indices = make_indices(path)
torch.save(file_indices, os.path.join(config.feature_path, set_type + '_indices.pt'))
print("Feature saved to \'%s\'." % (config.feature_path))
if __name__ == "__main__":
main()