-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
73 lines (63 loc) · 2.5 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import warnings
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
warnings.filterwarnings(action='ignore')
from keras.callbacks import CSVLogger, ModelCheckpoint, EarlyStopping
from keras.callbacks import ReduceLROnPlateau
from keras.preprocessing.image import ImageDataGenerator
from load_process import load_dataset
from load_process import process_data
from trained_model.cnn import mini_XCEPTION
from trained_model.cnn import simpler_CNN
from sklearn.model_selection import train_test_split
# 参数
batch_size = 32
num_epochs = 500
input_shape = (48, 48, 1)
validation_split = .2
verbose = 1
num_classes = 7
patience = 50
base_path = 'trained_model/'
# 构建模型
model = mini_XCEPTION(input_shape, num_classes)
model.compile(optimizer='adam', # 优化器采用adam
loss='categorical_crossentropy', # 多分类的对数损失函数
metrics=['accuracy'])
model.summary()
# 定义回调函数 Callbacks 用于训练过程
log_file_path = base_path + '_training.log'
csv_logger = CSVLogger(log_file_path, append=False)
early_stop = EarlyStopping('val_loss', patience=patience)
reduce_lr = ReduceLROnPlateau('val_loss', factor=0.1,
patience=int(patience / 4),
verbose=1)
# 模型位置及命名
trained_models_path = base_path + 'mini_XCEPTION'
model_names = trained_models_path + '.{epoch:02d}-{val_acc:.2f}.hdf5'
# 定义模型权重位置、命名等
model_checkpoint = ModelCheckpoint(model_names,
'val_loss', verbose=1,
save_best_only=True)
callbacks = [model_checkpoint, csv_logger, early_stop, reduce_lr]
# 载入数据集
faces, emotions = load_dataset()
faces = process_data(faces)
num_samples, num_classes = emotions.shape
xtrain, xtest, ytrain, ytest = train_test_split(faces, emotions, test_size=0.2, shuffle=True)
# 图片产生器,在批量中对数据进行增强,扩充数据集大小
data_generator = ImageDataGenerator(
featurewise_center=False,
featurewise_std_normalization=False,
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=.1,
horizontal_flip=True)
# 利用数据增强进行训练
model.fit_generator(data_generator.flow(xtrain, ytrain, batch_size),
steps_per_epoch=len(xtrain) / batch_size,
epochs=num_epochs,
verbose=1, callbacks=callbacks,
validation_data=(xtest, ytest))