-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathoptlib.py
392 lines (307 loc) · 11 KB
/
optlib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal as sig
import scipy.spatial.distance as dst
import csv
# Data processing functions
def my_FR(spikes: np.ndarray,
duration: float,
window_size: float,
overlap: float) -> (np.ndarray, np.ndarray):
"""
Compute the firing rate using a windowed moving average.
Parameters
----------
spikes: numpy.ndarray
The spike times (Brian2 format, in _seconds_)
duration: int
The duration of the recording (in seconds)
window_size: float
Width of the moving average window (in seconds)
overlap: float
Desired overlap between the windows (percentage, in [0., 1.))
Returns
-------
t: numpy.ndarray
Array of time values for the computed firing rate. These are the window centers.
FR: numpy.ndarray
Spikes per window (needs to be normalized)
"""
# Calculate new sampling times
win_step = window_size * round(1. - overlap, 4)
fs_n = int(1/win_step)
# First center is at the middle of the first window
c0 = window_size/2
cN = duration-c0
# centers
centers = np.arange(c0, cN+win_step, win_step)
# Calculate windowed FR
counts = []
for center in centers:
cl = center - c0
ch = center + c0
spike_cnt = np.count_nonzero(np.where((spikes >= cl) & (spikes < ch)))
counts.append(spike_cnt)
FR = (np.array(counts)/window_size)
# return centers, spike counts, and adjusted sampling rates per window
return centers, FR, fs_n
def my_PSD(data, fs, N):
# Welch estimate parameters
segment_size = np.int32(0.5*N) # Segment size = 50 % of data length
overlap_frac = 0.5
overlap_size = overlap_frac*segment_size
fft_size = 512
# Frequency resolution
fres = fs/segment_size
## Welch function
f, PSD_welch = signal.welch(data, fs, window='hann', nperseg=segment_size, noverlap=overlap_size, nfft=fft_size, scaling='density', return_onesided=True, detrend='constant', average='mean')
return f, PSD_welch
# Optimization Functions
def logistic0(x, L=1, k=1, xm=0):
"""
Logistic function for parameter optimization.
Parameters
----------
L: np.float32
Maximum value (defaults to 1).
k: np.float32
Controls the rate of the decay.
xm: np.float32
Point where f(xm) = 1/2.
Returns
-------
y: np.ndarray
y = f(x) = L / (1 + exp(-k * (x-xm)))
"""
return L / (1 + np.exp(-k * (x-xm)))
def logistic1(x, L=1, k=1, xm=0):
"""
Logistic function (y-mirrored) for parameter optimization.
Parameters
----------
x: np.ndarray
Input values.
L: np.float32
Maximum value (defaults to 1).
k: np.float32
Controls the rate of the decay.
xm: np.float32
Point where f(xm) = 1/2.
Returns
-------
y: np.ndarray
y = f(x) = L / (1 + exp(-k * (-x+xm)))
"""
return L / (1 + np.exp(-k * (-x+xm)))
def my_tanh(x, gp=1, gn=1, uz=1, uo=0):
"""
Hyperbolic tangent (uneven) for parameter optimization.
Parameters
----------
x: np.ndarray
Input values.
gp: np.float32
Controls the gain of the _positive_ part.
gn: np.float32
Controls the gain of the _negative_ part.
uz: np.float32
Point for the zero-crossing.
uo: np.float32
Vertical (y-axis) offset.
Returns
-------
y: np.ndarray
y = g0*tanh(x-u0)*(x>=u0) + g1*tanh(x-u0)*(x<u0)
"""
pos = gp*(np.tanh(x-uz)+uo) + uo
neg = gn*(np.tanh(x-uz)+uo) + uo
return pos*(x>=uz) + neg*(x<uz)
def my_gauss(x, mu=0, sigma=0.5, g=1):
"""
Normalized Gaussian for parameter optimization.
Parameters
----------
x: np.ndarray
Input values.
sigma: np.float32
Variance.
mu: np.float32
Mean.
g: np.float32
Output gain.
Returns
-------
y: np.ndarray
y = 1/(sigma*sqrt(2*pi)) * exp((-(x-mu)**2)/(2*sigma**2))
"""
G = (1/(sigma*np.sqrt(2*np.pi))) * np.exp(-((x-mu)**2)/(2*(sigma**2)))
G /= np.max(G)
return g*G
def cost_func(data, target=None, duration=1, fs=10000, areasizes={"EC":[10000, 1000], "DG":[10000, 100], "CA3":[1000, 100], "CA1":[10000, 1000]}, params_FR={"winsize":1e3, "overlap":0.5}, params_PSD={"winsize":1e3}, gains={"FR":1, "FR_mean":1, "FR_max":1, "PSD":1}):
# Parameters
N_EC_exc = areasizes["EC"][0]
N_EC_inh = areasizes["EC"][1]
N_DG_exc = areasizes["DG"][0]
N_DG_inh = areasizes["DG"][1]
N_CA3_exc = areasizes["CA3"][0]
N_CA3_inh = areasizes["CA3"][1]
N_CA1_exc = areasizes["CA1"][0]
N_CA1_inh = areasizes["CA1"][1]
winsize_FR = params_FR["winsize"]
overlap_FR = params_FR["overlap"]
winsize_PSD = params_PSD["winsize"]
g0 = gains["FR"]
g1 = gains["FR_mean"]
g2 = gains["FR_max"]
g3 = gains["PSD"]
# Goal vector [mu_FR_E mu_FR_I ... max_FR_CA1_E, fout]
# ----------------------------------------------------
if (target is None):
# Defaults
mu_FR_E = 5
mu_FR_I = 50
max_FR_CA1_E = 10
fout = 6
# make the goal vector
goal = [mu_FR_E, mu_FR_I]*4
goal.append(max_FR_CA1_E)
goal.append(fout)
else:
goal = target
# Initialize values vector
# ------------------------
vals0 = []
vals = []
# Firing rates
# ------------
# Calcualte FRs per area
tv_FR, FR_EC_exc, fs_FR = my_FR(spikes=data["EC"]["E"]["t"], duration=duration, window_size=winsize_FR, overlap=overlap_FR)
_, FR_EC_inh, _ = my_FR(spikes=data["EC"]["I"]["t"], duration=duration, window_size=winsize_FR, overlap=overlap_FR)
_, FR_DG_exc, _ = my_FR(spikes=data["DG"]["E"]["t"], duration=duration, window_size=winsize_FR, overlap=overlap_FR)
_, FR_DG_inh, _ = my_FR(spikes=data["DG"]["I"]["t"], duration=duration, window_size=winsize_FR, overlap=overlap_FR)
_, FR_CA3_exc, _ = my_FR(spikes=data["CA3"]["E"]["t"], duration=duration, window_size=winsize_FR, overlap=overlap_FR)
_, FR_CA3_inh, _ = my_FR(spikes=data["CA3"]["I"]["t"], duration=duration, window_size=winsize_FR, overlap=overlap_FR)
_, FR_CA1_exc, _ = my_FR(spikes=data["CA1"]["E"]["t"], duration=duration, window_size=winsize_FR, overlap=overlap_FR)
_, FR_CA1_inh, _ = my_FR(spikes=data["CA1"]["I"]["t"], duration=duration, window_size=winsize_FR, overlap=overlap_FR)
# Normalize w.r.t. area size
FR_EC_exc /= N_EC_exc
FR_EC_inh /= N_EC_inh
FR_DG_exc /= N_DG_exc
FR_DG_inh /= N_DG_inh
FR_CA3_exc /= N_CA3_exc
FR_CA3_inh /= N_CA3_inh
FR_CA1_exc /= N_CA1_exc
FR_CA1_inh /= N_CA1_inh
# Mean FR per area
FR_EC_exc_mean = (len(data["EC"]["E"]["t"])/duration)/N_EC_exc
FR_EC_inh_mean = (len(data["EC"]["I"]["t"])/duration)/N_EC_inh
vals0.append(FR_EC_exc_mean)
vals.append(FR_EC_exc_mean)
vals.append(FR_EC_inh_mean)
FR_DG_exc_mean = (len(data["DG"]["E"]["t"])/duration)/N_DG_exc
FR_DG_inh_mean = (len(data["DG"]["I"]["t"])/duration)/N_DG_inh
vals0.append(FR_DG_exc_mean)
vals.append(FR_DG_exc_mean)
vals.append(FR_DG_inh_mean)
FR_CA3_exc_mean = (len(data["CA3"]["E"]["t"])/duration)/N_CA3_exc
FR_CA3_inh_mean = (len(data["CA3"]["I"]["t"])/duration)/N_CA3_inh
vals0.append(FR_CA3_exc_mean)
vals.append(FR_CA3_exc_mean)
vals.append(FR_CA3_inh_mean)
FR_CA1_exc_mean = (len(data["CA1"]["E"]["t"])/duration)/N_CA1_exc
FR_CA1_inh_mean = (len(data["CA1"]["I"]["t"])/duration)/N_CA1_inh
vals0.append(FR_CA1_exc_mean)
vals.append(FR_CA1_exc_mean)
vals.append(FR_CA1_inh_mean)
# Max FR per area
FR_EC_exc_max = np.max(FR_EC_exc)
FR_EC_inh_max = np.max(FR_EC_inh)
FR_DG_exc_max = np.max(FR_DG_exc)
FR_DG_inh_max = np.max(FR_DG_inh)
FR_CA3_exc_max = np.max(FR_CA3_exc)
FR_CA3_inh_max = np.max(FR_CA3_inh)
FR_CA1_exc_max = np.max(FR_CA1_exc)
FR_CA1_inh_max = np.max(FR_CA1_inh)
# vals.append(FR_CA1_exc_max)
# vals.append(FR_EC_inh_mean)
# Output Frequency
pks, _ = sig.find_peaks(data["rhythm"], distance=int(0.100*fs))
fval = 1/(max(pks[1:] - pks[0:-1])/fs) if len(pks)>1 else 1/(pks[0]/fs)
# fval = 6
vals0.append(fval)
vals.append(fval)
# Periodogram (PSD)
# f, PSD = my_PSD()
# J = g0*A +g1*B + g2*C + g3*D
J = dst.euclidean(goal, vals0)
return J, vals
if __name__ == "__main__":
""" Exhibition of the functions to be used """
dx = 0.01
xmin = 5
xmax = 15
xv = np.arange(xmin, xmax, dx)
L0 = L1 = 1
k0 = k1 = 5.5
x0 = 8.5
x1 = 11.
# Calculations
y0 = logistic0(xv, L0, k0, x0)
y1 = logistic1(xv, L1, k1, x1)
yt0 = my_tanh(xv, gp=1, gn=1, uz=8)
yt1 = my_tanh(xv, gp=-1, gn=-1, uz=12)
# Plot the functions
fig, axs = plt.subplots(3,1, figsize=(12,12))
axs[0].plot(xv, y0, c='C0', label='L0')
axs[0].plot(xv, y1, c='C1', label='L1')
axs[0].plot(xv, y0*y1, c='C3', ls='--', label='L0*L1')
axs[0].legend(loc=0)
axs[1].plot(xv, yt0, c='C0', label='tanh')
axs[1].plot(xv, yt1, c='C1', label='mirrored')
axs[1].plot(xv, yt0*yt1, c='C3', ls='--', label='product')
axs[1].legend(loc=0)
axs[2].plot(xv, my_gauss(xv, mu=10, sigma=1.5), c='C0', label='X~N(10,1.5)')
axs[2].legend(loc=0)
# plt.show()
# Test case
# ---------
fs = 10e3
winsize_FR = 15/1e3
overlap_FR = 0.9 # percentage
winstep_FR = winsize_FR*round(1-overlap_FR,4)
fs_FR = int(1/winstep_FR)
tdir = 'results/analysis/optimization_test/good_noise/data'
fnames = ["EC_pyCAN", "EC_inh", "DG_py", "DG_inh", "CA3_pyCAN", "CA3_inh", "CA1_pyCAN", "CA1_inh"]
data = {}
for f in fnames:
tokens = f.split('_')
area = tokens[0]
pop = tokens[1]
if area not in data:
data[area] = {}
data[area]["E"] = {}
data[area]["I"] = {}
if tokens[1] == "inh":
data[area]["I"]["t"] = np.loadtxt(tdir + '/spikes/' + f + '_spikemon_t.txt')/1000
data[area]["I"]["i"] = np.loadtxt(tdir + '/spikes/' + f + '_spikemon_i.txt')/1000
else:
data[area]["E"]["t"] = np.loadtxt(tdir + '/spikes/' + f + '_spikemon_t.txt')/1000
data[area]["E"]["i"] = np.loadtxt(tdir + '/spikes/' + f + '_spikemon_i.txt')/1000
# Output rhythm
data["rhythm"] = np.loadtxt(tdir + '/' + 'order_param_mon_rhythm.txt')
duration = len(data["rhythm"])/fs
# Run the cost function
params_FR = {"winsize":winsize_FR, "overlap":overlap_FR}
J, vec = cost_func(data, None, duration, fs, params_FR=params_FR)
print("Euclidean distance:", J)
print(vec)
# Write to a CSV file
csv_header = ['config', 'J', 'vector']
csv_data = ['test0.cfg', J] + vec
with open('optimization_test.csv', 'a', encoding='UTF8', newline='') as fout:
writer = csv.writer(fout)
# write the header
writer.writerow(csv_header)
# write the data
writer.writerow(csv_data)
exit(0)