forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotebook.py
1122 lines (937 loc) · 42.3 KB
/
notebook.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import time
from collections import defaultdict
from inspect import getsource
import ipywidgets as widgets
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
from IPython.display import HTML
from IPython.display import display
from PIL import Image
from matplotlib import lines
from games import TicTacToe, alpha_beta_player, random_player, Fig52Extended
from learning import DataSet
from logic import parse_definite_clause, standardize_variables, unify_mm, subst
from search import GraphProblem, romania_map
# ______________________________________________________________________________
# Magic Words
def pseudocode(algorithm):
"""Print the pseudocode for the given algorithm."""
from urllib.request import urlopen
from IPython.display import Markdown
algorithm = algorithm.replace(' ', '-')
url = "https://raw.githubusercontent.com/aimacode/aima-pseudocode/master/md/{}.md".format(algorithm)
f = urlopen(url)
md = f.read().decode('utf-8')
md = md.split('\n', 1)[-1].strip()
md = '#' + md
return Markdown(md)
def psource(*functions):
"""Print the source code for the given function(s)."""
source_code = '\n\n'.join(getsource(fn) for fn in functions)
try:
from pygments.formatters import HtmlFormatter
from pygments.lexers import PythonLexer
from pygments import highlight
display(HTML(highlight(source_code, PythonLexer(), HtmlFormatter(full=True))))
except ImportError:
print(source_code)
# ______________________________________________________________________________
# Iris Visualization
def show_iris(i=0, j=1, k=2):
"""Plots the iris dataset in a 3D plot.
The three axes are given by i, j and k,
which correspond to three of the four iris features."""
plt.rcParams.update(plt.rcParamsDefault)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
iris = DataSet(name="iris")
buckets = iris.split_values_by_classes()
features = ["Sepal Length", "Sepal Width", "Petal Length", "Petal Width"]
f1, f2, f3 = features[i], features[j], features[k]
a_setosa = [v[i] for v in buckets["setosa"]]
b_setosa = [v[j] for v in buckets["setosa"]]
c_setosa = [v[k] for v in buckets["setosa"]]
a_virginica = [v[i] for v in buckets["virginica"]]
b_virginica = [v[j] for v in buckets["virginica"]]
c_virginica = [v[k] for v in buckets["virginica"]]
a_versicolor = [v[i] for v in buckets["versicolor"]]
b_versicolor = [v[j] for v in buckets["versicolor"]]
c_versicolor = [v[k] for v in buckets["versicolor"]]
for c, m, sl, sw, pl in [('b', 's', a_setosa, b_setosa, c_setosa),
('g', '^', a_virginica, b_virginica, c_virginica),
('r', 'o', a_versicolor, b_versicolor, c_versicolor)]:
ax.scatter(sl, sw, pl, c=c, marker=m)
ax.set_xlabel(f1)
ax.set_ylabel(f2)
ax.set_zlabel(f3)
plt.show()
# ______________________________________________________________________________
# MNIST
def load_MNIST(path="aima-data/MNIST/Digits", fashion=False):
import os, struct
import array
import numpy as np
if fashion:
path = "aima-data/MNIST/Fashion"
plt.rcParams.update(plt.rcParamsDefault)
plt.rcParams['figure.figsize'] = (10.0, 8.0)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
train_img_file = open(os.path.join(path, "train-images-idx3-ubyte"), "rb")
train_lbl_file = open(os.path.join(path, "train-labels-idx1-ubyte"), "rb")
test_img_file = open(os.path.join(path, "t10k-images-idx3-ubyte"), "rb")
test_lbl_file = open(os.path.join(path, 't10k-labels-idx1-ubyte'), "rb")
magic_nr, tr_size, tr_rows, tr_cols = struct.unpack(">IIII", train_img_file.read(16))
tr_img = array.array("B", train_img_file.read())
train_img_file.close()
magic_nr, tr_size = struct.unpack(">II", train_lbl_file.read(8))
tr_lbl = array.array("b", train_lbl_file.read())
train_lbl_file.close()
magic_nr, te_size, te_rows, te_cols = struct.unpack(">IIII", test_img_file.read(16))
te_img = array.array("B", test_img_file.read())
test_img_file.close()
magic_nr, te_size = struct.unpack(">II", test_lbl_file.read(8))
te_lbl = array.array("b", test_lbl_file.read())
test_lbl_file.close()
# print(len(tr_img), len(tr_lbl), tr_size)
# print(len(te_img), len(te_lbl), te_size)
train_img = np.zeros((tr_size, tr_rows * tr_cols), dtype=np.int16)
train_lbl = np.zeros((tr_size,), dtype=np.int8)
for i in range(tr_size):
train_img[i] = np.array(tr_img[i * tr_rows * tr_cols: (i + 1) * tr_rows * tr_cols]).reshape((tr_rows * te_cols))
train_lbl[i] = tr_lbl[i]
test_img = np.zeros((te_size, te_rows * te_cols), dtype=np.int16)
test_lbl = np.zeros((te_size,), dtype=np.int8)
for i in range(te_size):
test_img[i] = np.array(te_img[i * te_rows * te_cols: (i + 1) * te_rows * te_cols]).reshape((te_rows * te_cols))
test_lbl[i] = te_lbl[i]
return (train_img, train_lbl, test_img, test_lbl)
digit_classes = [str(i) for i in range(10)]
fashion_classes = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
def show_MNIST(labels, images, samples=8, fashion=False):
if not fashion:
classes = digit_classes
else:
classes = fashion_classes
num_classes = len(classes)
for y, cls in enumerate(classes):
idxs = np.nonzero([i == y for i in labels])
idxs = np.random.choice(idxs[0], samples, replace=False)
for i, idx in enumerate(idxs):
plt_idx = i * num_classes + y + 1
plt.subplot(samples, num_classes, plt_idx)
plt.imshow(images[idx].reshape((28, 28)))
plt.axis("off")
if i == 0:
plt.title(cls)
plt.show()
def show_ave_MNIST(labels, images, fashion=False):
if not fashion:
item_type = "Digit"
classes = digit_classes
else:
item_type = "Apparel"
classes = fashion_classes
num_classes = len(classes)
for y, cls in enumerate(classes):
idxs = np.nonzero([i == y for i in labels])
print(item_type, y, ":", len(idxs[0]), "images.")
ave_img = np.mean(np.vstack([images[i] for i in idxs[0]]), axis=0)
# print(ave_img.shape)
plt.subplot(1, num_classes, y + 1)
plt.imshow(ave_img.reshape((28, 28)))
plt.axis("off")
plt.title(cls)
plt.show()
# ______________________________________________________________________________
# MDP
def make_plot_grid_step_function(columns, rows, U_over_time):
"""ipywidgets interactive function supports single parameter as input.
This function creates and return such a function by taking as input
other parameters."""
def plot_grid_step(iteration):
data = U_over_time[iteration]
data = defaultdict(lambda: 0, data)
grid = []
for row in range(rows):
current_row = []
for column in range(columns):
current_row.append(data[(column, row)])
grid.append(current_row)
grid.reverse() # output like book
fig = plt.imshow(grid, cmap=plt.cm.bwr, interpolation='nearest')
plt.axis('off')
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
for col in range(len(grid)):
for row in range(len(grid[0])):
magic = grid[col][row]
fig.axes.text(row, col, "{0:.2f}".format(magic), va='center', ha='center')
plt.show()
return plot_grid_step
def make_visualize(slider):
"""Takes an input a sliderand returns callback function
for timer and animation."""
def visualize_callback(Visualize, time_step):
if Visualize is True:
for i in range(slider.min, slider.max + 1):
slider.value = i
time.sleep(float(time_step))
return visualize_callback
# ______________________________________________________________________________
_canvas = """
<script type="text/javascript" src="./js/canvas.js"></script>
<div>
<canvas id="{0}" width="{1}" height="{2}" style="background:rgba(158, 167, 184, 0.2);" onclick='click_callback(this, event, "{3}")'></canvas>
</div>
<script> var {0}_canvas_object = new Canvas("{0}");</script>
""" # noqa
class Canvas:
"""Inherit from this class to manage the HTML canvas element in jupyter notebooks.
To create an object of this class any_name_xyz = Canvas("any_name_xyz")
The first argument given must be the name of the object being created.
IPython must be able to reference the variable name that is being passed."""
def __init__(self, varname, width=800, height=600, cid=None):
self.name = varname
self.cid = cid or varname
self.width = width
self.height = height
self.html = _canvas.format(self.cid, self.width, self.height, self.name)
self.exec_list = []
display_html(self.html)
def mouse_click(self, x, y):
"""Override this method to handle mouse click at position (x, y)"""
raise NotImplementedError
def mouse_move(self, x, y):
raise NotImplementedError
def execute(self, exec_str):
"""Stores the command to be executed to a list which is used later during update()"""
if not isinstance(exec_str, str):
print("Invalid execution argument:", exec_str)
self.alert("Received invalid execution command format")
prefix = "{0}_canvas_object.".format(self.cid)
self.exec_list.append(prefix + exec_str + ';')
def fill(self, r, g, b):
"""Changes the fill color to a color in rgb format"""
self.execute("fill({0}, {1}, {2})".format(r, g, b))
def stroke(self, r, g, b):
"""Changes the colors of line/strokes to rgb"""
self.execute("stroke({0}, {1}, {2})".format(r, g, b))
def strokeWidth(self, w):
"""Changes the width of lines/strokes to 'w' pixels"""
self.execute("strokeWidth({0})".format(w))
def rect(self, x, y, w, h):
"""Draw a rectangle with 'w' width, 'h' height and (x, y) as the top-left corner"""
self.execute("rect({0}, {1}, {2}, {3})".format(x, y, w, h))
def rect_n(self, xn, yn, wn, hn):
"""Similar to rect(), but the dimensions are normalized to fall between 0 and 1"""
x = round(xn * self.width)
y = round(yn * self.height)
w = round(wn * self.width)
h = round(hn * self.height)
self.rect(x, y, w, h)
def line(self, x1, y1, x2, y2):
"""Draw a line from (x1, y1) to (x2, y2)"""
self.execute("line({0}, {1}, {2}, {3})".format(x1, y1, x2, y2))
def line_n(self, x1n, y1n, x2n, y2n):
"""Similar to line(), but the dimensions are normalized to fall between 0 and 1"""
x1 = round(x1n * self.width)
y1 = round(y1n * self.height)
x2 = round(x2n * self.width)
y2 = round(y2n * self.height)
self.line(x1, y1, x2, y2)
def arc(self, x, y, r, start, stop):
"""Draw an arc with (x, y) as centre, 'r' as radius from angles 'start' to 'stop'"""
self.execute("arc({0}, {1}, {2}, {3}, {4})".format(x, y, r, start, stop))
def arc_n(self, xn, yn, rn, start, stop):
"""Similar to arc(), but the dimensions are normalized to fall between 0 and 1
The normalizing factor for radius is selected between width and height by
seeing which is smaller."""
x = round(xn * self.width)
y = round(yn * self.height)
r = round(rn * min(self.width, self.height))
self.arc(x, y, r, start, stop)
def clear(self):
"""Clear the HTML canvas"""
self.execute("clear()")
def font(self, font):
"""Changes the font of text"""
self.execute('font("{0}")'.format(font))
def text(self, txt, x, y, fill=True):
"""Display a text at (x, y)"""
if fill:
self.execute('fill_text("{0}", {1}, {2})'.format(txt, x, y))
else:
self.execute('stroke_text("{0}", {1}, {2})'.format(txt, x, y))
def text_n(self, txt, xn, yn, fill=True):
"""Similar to text(), but with normalized coordinates"""
x = round(xn * self.width)
y = round(yn * self.height)
self.text(txt, x, y, fill)
def alert(self, message):
"""Immediately display an alert"""
display_html('<script>alert("{0}")</script>'.format(message))
def update(self):
"""Execute the JS code to execute the commands queued by execute()"""
exec_code = "<script>\n" + '\n'.join(self.exec_list) + "\n</script>"
self.exec_list = []
display_html(exec_code)
def display_html(html_string):
display(HTML(html_string))
################################################################################
class Canvas_TicTacToe(Canvas):
"""Play a 3x3 TicTacToe game on HTML canvas"""
def __init__(self, varname, player_1='human', player_2='random',
width=300, height=350, cid=None):
valid_players = ('human', 'random', 'alpha_beta')
if player_1 not in valid_players or player_2 not in valid_players:
raise TypeError("Players must be one of {}".format(valid_players))
super().__init__(varname, width, height, cid)
self.ttt = TicTacToe()
self.state = self.ttt.initial
self.turn = 0
self.strokeWidth(5)
self.players = (player_1, player_2)
self.font("20px Arial")
self.draw_board()
def mouse_click(self, x, y):
player = self.players[self.turn]
if self.ttt.terminal_test(self.state):
if 0.55 <= x / self.width <= 0.95 and 6 / 7 <= y / self.height <= 6 / 7 + 1 / 8:
self.state = self.ttt.initial
self.turn = 0
self.draw_board()
return
if player == 'human':
x, y = int(3 * x / self.width) + 1, int(3 * y / (self.height * 6 / 7)) + 1
if (x, y) not in self.ttt.actions(self.state):
# Invalid move
return
move = (x, y)
elif player == 'alpha_beta':
move = alpha_beta_player(self.ttt, self.state)
else:
move = random_player(self.ttt, self.state)
self.state = self.ttt.result(self.state, move)
self.turn ^= 1
self.draw_board()
def draw_board(self):
self.clear()
self.stroke(0, 0, 0)
offset = 1 / 20
self.line_n(0 + offset, (1 / 3) * 6 / 7, 1 - offset, (1 / 3) * 6 / 7)
self.line_n(0 + offset, (2 / 3) * 6 / 7, 1 - offset, (2 / 3) * 6 / 7)
self.line_n(1 / 3, (0 + offset) * 6 / 7, 1 / 3, (1 - offset) * 6 / 7)
self.line_n(2 / 3, (0 + offset) * 6 / 7, 2 / 3, (1 - offset) * 6 / 7)
board = self.state.board
for mark in board:
if board[mark] == 'X':
self.draw_x(mark)
elif board[mark] == 'O':
self.draw_o(mark)
if self.ttt.terminal_test(self.state):
# End game message
utility = self.ttt.utility(self.state, self.ttt.to_move(self.ttt.initial))
if utility == 0:
self.text_n('Game Draw!', offset, 6 / 7 + offset)
else:
self.text_n('Player {} wins!'.format("XO"[utility < 0]), offset, 6 / 7 + offset)
# Find the 3 and draw a line
self.stroke([255, 0][self.turn], [0, 255][self.turn], 0)
for i in range(3):
if all([(i + 1, j + 1) in self.state.board for j in range(3)]) and \
len({self.state.board[(i + 1, j + 1)] for j in range(3)}) == 1:
self.line_n(i / 3 + 1 / 6, offset * 6 / 7, i / 3 + 1 / 6, (1 - offset) * 6 / 7)
if all([(j + 1, i + 1) in self.state.board for j in range(3)]) and \
len({self.state.board[(j + 1, i + 1)] for j in range(3)}) == 1:
self.line_n(offset, (i / 3 + 1 / 6) * 6 / 7, 1 - offset, (i / 3 + 1 / 6) * 6 / 7)
if all([(i + 1, i + 1) in self.state.board for i in range(3)]) and \
len({self.state.board[(i + 1, i + 1)] for i in range(3)}) == 1:
self.line_n(offset, offset * 6 / 7, 1 - offset, (1 - offset) * 6 / 7)
if all([(i + 1, 3 - i) in self.state.board for i in range(3)]) and \
len({self.state.board[(i + 1, 3 - i)] for i in range(3)}) == 1:
self.line_n(offset, (1 - offset) * 6 / 7, 1 - offset, offset * 6 / 7)
# restart button
self.fill(0, 0, 255)
self.rect_n(0.5 + offset, 6 / 7, 0.4, 1 / 8)
self.fill(0, 0, 0)
self.text_n('Restart', 0.5 + 2 * offset, 13 / 14)
else: # Print which player's turn it is
self.text_n("Player {}'s move({})".format("XO"[self.turn], self.players[self.turn]),
offset, 6 / 7 + offset)
self.update()
def draw_x(self, position):
self.stroke(0, 255, 0)
x, y = [i - 1 for i in position]
offset = 1 / 15
self.line_n(x / 3 + offset, (y / 3 + offset) * 6 / 7, x / 3 + 1 / 3 - offset, (y / 3 + 1 / 3 - offset) * 6 / 7)
self.line_n(x / 3 + 1 / 3 - offset, (y / 3 + offset) * 6 / 7, x / 3 + offset, (y / 3 + 1 / 3 - offset) * 6 / 7)
def draw_o(self, position):
self.stroke(255, 0, 0)
x, y = [i - 1 for i in position]
self.arc_n(x / 3 + 1 / 6, (y / 3 + 1 / 6) * 6 / 7, 1 / 9, 0, 360)
class Canvas_min_max(Canvas):
"""MinMax for Fig52Extended on HTML canvas"""
def __init__(self, varname, util_list, width=800, height=600, cid=None):
super.__init__(varname, width, height, cid)
self.utils = {node: util for node, util in zip(range(13, 40), util_list)}
self.game = Fig52Extended()
self.game.utils = self.utils
self.nodes = list(range(40))
self.l = 1 / 40
self.node_pos = {}
for i in range(4):
base = len(self.node_pos)
row_size = 3 ** i
for node in [base + j for j in range(row_size)]:
self.node_pos[node] = ((node - base) / row_size + 1 / (2 * row_size) - self.l / 2,
self.l / 2 + (self.l + (1 - 5 * self.l) / 3) * i)
self.font("12px Arial")
self.node_stack = []
self.explored = {node for node in self.utils}
self.thick_lines = set()
self.change_list = []
self.draw_graph()
self.stack_manager = self.stack_manager_gen()
def min_max(self, node):
game = self.game
player = game.to_move(node)
def max_value(node):
if game.terminal_test(node):
return game.utility(node, player)
self.change_list.append(('a', node))
self.change_list.append(('h',))
max_a = max(game.actions(node), key=lambda x: min_value(game.result(node, x)))
max_node = game.result(node, max_a)
self.utils[node] = self.utils[max_node]
x1, y1 = self.node_pos[node]
x2, y2 = self.node_pos[max_node]
self.change_list.append(('l', (node, max_node - 3 * node - 1)))
self.change_list.append(('e', node))
self.change_list.append(('p',))
self.change_list.append(('h',))
return self.utils[node]
def min_value(node):
if game.terminal_test(node):
return game.utility(node, player)
self.change_list.append(('a', node))
self.change_list.append(('h',))
min_a = min(game.actions(node), key=lambda x: max_value(game.result(node, x)))
min_node = game.result(node, min_a)
self.utils[node] = self.utils[min_node]
x1, y1 = self.node_pos[node]
x2, y2 = self.node_pos[min_node]
self.change_list.append(('l', (node, min_node - 3 * node - 1)))
self.change_list.append(('e', node))
self.change_list.append(('p',))
self.change_list.append(('h',))
return self.utils[node]
return max_value(node)
def stack_manager_gen(self):
self.min_max(0)
for change in self.change_list:
if change[0] == 'a':
self.node_stack.append(change[1])
elif change[0] == 'e':
self.explored.add(change[1])
elif change[0] == 'h':
yield
elif change[0] == 'l':
self.thick_lines.add(change[1])
elif change[0] == 'p':
self.node_stack.pop()
def mouse_click(self, x, y):
try:
self.stack_manager.send(None)
except StopIteration:
pass
self.draw_graph()
def draw_graph(self):
self.clear()
# draw nodes
self.stroke(0, 0, 0)
self.strokeWidth(1)
# highlight for nodes in stack
for node in self.node_stack:
x, y = self.node_pos[node]
self.fill(200, 200, 0)
self.rect_n(x - self.l / 5, y - self.l / 5, self.l * 7 / 5, self.l * 7 / 5)
for node in self.nodes:
x, y = self.node_pos[node]
if node in self.explored:
self.fill(255, 255, 255)
else:
self.fill(200, 200, 200)
self.rect_n(x, y, self.l, self.l)
self.line_n(x, y, x + self.l, y)
self.line_n(x, y, x, y + self.l)
self.line_n(x + self.l, y + self.l, x + self.l, y)
self.line_n(x + self.l, y + self.l, x, y + self.l)
self.fill(0, 0, 0)
if node in self.explored:
self.text_n(self.utils[node], x + self.l / 10, y + self.l * 9 / 10)
# draw edges
for i in range(13):
x1, y1 = self.node_pos[i][0] + self.l / 2, self.node_pos[i][1] + self.l
for j in range(3):
x2, y2 = self.node_pos[i * 3 + j + 1][0] + self.l / 2, self.node_pos[i * 3 + j + 1][1]
if i in [1, 2, 3]:
self.stroke(200, 0, 0)
else:
self.stroke(0, 200, 0)
if (i, j) in self.thick_lines:
self.strokeWidth(3)
else:
self.strokeWidth(1)
self.line_n(x1, y1, x2, y2)
self.update()
class Canvas_alpha_beta(Canvas):
"""Alpha-beta pruning for Fig52Extended on HTML canvas"""
def __init__(self, varname, util_list, width=800, height=600, cid=None):
super().__init__(varname, width, height, cid)
self.utils = {node: util for node, util in zip(range(13, 40), util_list)}
self.game = Fig52Extended()
self.game.utils = self.utils
self.nodes = list(range(40))
self.l = 1 / 40
self.node_pos = {}
for i in range(4):
base = len(self.node_pos)
row_size = 3 ** i
for node in [base + j for j in range(row_size)]:
self.node_pos[node] = ((node - base) / row_size + 1 / (2 * row_size) - self.l / 2,
3 * self.l / 2 + (self.l + (1 - 6 * self.l) / 3) * i)
self.font("12px Arial")
self.node_stack = []
self.explored = {node for node in self.utils}
self.pruned = set()
self.ab = {}
self.thick_lines = set()
self.change_list = []
self.draw_graph()
self.stack_manager = self.stack_manager_gen()
def alpha_beta_search(self, node):
game = self.game
player = game.to_move(node)
# Functions used by alpha_beta
def max_value(node, alpha, beta):
if game.terminal_test(node):
self.change_list.append(('a', node))
self.change_list.append(('h',))
self.change_list.append(('p',))
return game.utility(node, player)
v = -np.inf
self.change_list.append(('a', node))
self.change_list.append(('ab', node, v, beta))
self.change_list.append(('h',))
for a in game.actions(node):
min_val = min_value(game.result(node, a), alpha, beta)
if v < min_val:
v = min_val
max_node = game.result(node, a)
self.change_list.append(('ab', node, v, beta))
if v >= beta:
self.change_list.append(('h',))
self.pruned.add(node)
break
alpha = max(alpha, v)
self.utils[node] = v
if node not in self.pruned:
self.change_list.append(('l', (node, max_node - 3 * node - 1)))
self.change_list.append(('e', node))
self.change_list.append(('p',))
self.change_list.append(('h',))
return v
def min_value(node, alpha, beta):
if game.terminal_test(node):
self.change_list.append(('a', node))
self.change_list.append(('h',))
self.change_list.append(('p',))
return game.utility(node, player)
v = np.inf
self.change_list.append(('a', node))
self.change_list.append(('ab', node, alpha, v))
self.change_list.append(('h',))
for a in game.actions(node):
max_val = max_value(game.result(node, a), alpha, beta)
if v > max_val:
v = max_val
min_node = game.result(node, a)
self.change_list.append(('ab', node, alpha, v))
if v <= alpha:
self.change_list.append(('h',))
self.pruned.add(node)
break
beta = min(beta, v)
self.utils[node] = v
if node not in self.pruned:
self.change_list.append(('l', (node, min_node - 3 * node - 1)))
self.change_list.append(('e', node))
self.change_list.append(('p',))
self.change_list.append(('h',))
return v
return max_value(node, -np.inf, np.inf)
def stack_manager_gen(self):
self.alpha_beta_search(0)
for change in self.change_list:
if change[0] == 'a':
self.node_stack.append(change[1])
elif change[0] == 'ab':
self.ab[change[1]] = change[2:]
elif change[0] == 'e':
self.explored.add(change[1])
elif change[0] == 'h':
yield
elif change[0] == 'l':
self.thick_lines.add(change[1])
elif change[0] == 'p':
self.node_stack.pop()
def mouse_click(self, x, y):
try:
self.stack_manager.send(None)
except StopIteration:
pass
self.draw_graph()
def draw_graph(self):
self.clear()
# draw nodes
self.stroke(0, 0, 0)
self.strokeWidth(1)
# highlight for nodes in stack
for node in self.node_stack:
x, y = self.node_pos[node]
# alpha > beta
if node not in self.explored and self.ab[node][0] > self.ab[node][1]:
self.fill(200, 100, 100)
else:
self.fill(200, 200, 0)
self.rect_n(x - self.l / 5, y - self.l / 5, self.l * 7 / 5, self.l * 7 / 5)
for node in self.nodes:
x, y = self.node_pos[node]
if node in self.explored:
if node in self.pruned:
self.fill(50, 50, 50)
else:
self.fill(255, 255, 255)
else:
self.fill(200, 200, 200)
self.rect_n(x, y, self.l, self.l)
self.line_n(x, y, x + self.l, y)
self.line_n(x, y, x, y + self.l)
self.line_n(x + self.l, y + self.l, x + self.l, y)
self.line_n(x + self.l, y + self.l, x, y + self.l)
self.fill(0, 0, 0)
if node in self.explored and node not in self.pruned:
self.text_n(self.utils[node], x + self.l / 10, y + self.l * 9 / 10)
# draw edges
for i in range(13):
x1, y1 = self.node_pos[i][0] + self.l / 2, self.node_pos[i][1] + self.l
for j in range(3):
x2, y2 = self.node_pos[i * 3 + j + 1][0] + self.l / 2, self.node_pos[i * 3 + j + 1][1]
if i in [1, 2, 3]:
self.stroke(200, 0, 0)
else:
self.stroke(0, 200, 0)
if (i, j) in self.thick_lines:
self.strokeWidth(3)
else:
self.strokeWidth(1)
self.line_n(x1, y1, x2, y2)
# display alpha and beta
for node in self.node_stack:
if node not in self.explored:
x, y = self.node_pos[node]
alpha, beta = self.ab[node]
self.text_n(alpha, x - self.l / 2, y - self.l / 10)
self.text_n(beta, x + self.l, y - self.l / 10)
self.update()
class Canvas_fol_bc_ask(Canvas):
"""fol_bc_ask() on HTML canvas"""
def __init__(self, varname, kb, query, width=800, height=600, cid=None):
super().__init__(varname, width, height, cid)
self.kb = kb
self.query = query
self.l = 1 / 20
self.b = 3 * self.l
bc_out = list(self.fol_bc_ask())
if len(bc_out) is 0:
self.valid = False
else:
self.valid = True
graph = bc_out[0][0][0]
s = bc_out[0][1]
while True:
new_graph = subst(s, graph)
if graph == new_graph:
break
graph = new_graph
self.make_table(graph)
self.context = None
self.draw_table()
def fol_bc_ask(self):
KB = self.kb
query = self.query
def fol_bc_or(KB, goal, theta):
for rule in KB.fetch_rules_for_goal(goal):
lhs, rhs = parse_definite_clause(standardize_variables(rule))
for theta1 in fol_bc_and(KB, lhs, unify_mm(rhs, goal, theta)):
yield ([(goal, theta1[0])], theta1[1])
def fol_bc_and(KB, goals, theta):
if theta is None:
pass
elif not goals:
yield ([], theta)
else:
first, rest = goals[0], goals[1:]
for theta1 in fol_bc_or(KB, subst(theta, first), theta):
for theta2 in fol_bc_and(KB, rest, theta1[1]):
yield (theta1[0] + theta2[0], theta2[1])
return fol_bc_or(KB, query, {})
def make_table(self, graph):
table = []
pos = {}
links = set()
edges = set()
def dfs(node, depth):
if len(table) <= depth:
table.append([])
pos = len(table[depth])
table[depth].append(node[0])
for child in node[1]:
child_id = dfs(child, depth + 1)
links.add(((depth, pos), child_id))
return (depth, pos)
dfs(graph, 0)
y_off = 0.85 / len(table)
for i, row in enumerate(table):
x_off = 0.95 / len(row)
for j, node in enumerate(row):
pos[(i, j)] = (0.025 + j * x_off + (x_off - self.b) / 2, 0.025 + i * y_off + (y_off - self.l) / 2)
for p, c in links:
x1, y1 = pos[p]
x2, y2 = pos[c]
edges.add((x1 + self.b / 2, y1 + self.l, x2 + self.b / 2, y2))
self.table = table
self.pos = pos
self.edges = edges
def mouse_click(self, x, y):
x, y = x / self.width, y / self.height
for node in self.pos:
xs, ys = self.pos[node]
xe, ye = xs + self.b, ys + self.l
if xs <= x <= xe and ys <= y <= ye:
self.context = node
break
self.draw_table()
def draw_table(self):
self.clear()
self.strokeWidth(3)
self.stroke(0, 0, 0)
self.font("12px Arial")
if self.valid:
# draw nodes
for i, j in self.pos:
x, y = self.pos[(i, j)]
self.fill(200, 200, 200)
self.rect_n(x, y, self.b, self.l)
self.line_n(x, y, x + self.b, y)
self.line_n(x, y, x, y + self.l)
self.line_n(x + self.b, y, x + self.b, y + self.l)
self.line_n(x, y + self.l, x + self.b, y + self.l)
self.fill(0, 0, 0)
self.text_n(self.table[i][j], x + 0.01, y + self.l - 0.01)
# draw edges
for x1, y1, x2, y2 in self.edges:
self.line_n(x1, y1, x2, y2)
else:
self.fill(255, 0, 0)
self.rect_n(0, 0, 1, 1)
# text area
self.fill(255, 255, 255)
self.rect_n(0, 0.9, 1, 0.1)
self.strokeWidth(5)
self.stroke(0, 0, 0)
self.line_n(0, 0.9, 1, 0.9)
self.font("22px Arial")
self.fill(0, 0, 0)
self.text_n(self.table[self.context[0]][self.context[1]] if self.context else "Click for text", 0.025, 0.975)
self.update()
############################################################################################################
##################### Functions to assist plotting in search.ipynb ####################
############################################################################################################
def show_map(graph_data, node_colors=None):
G = nx.Graph(graph_data['graph_dict'])
node_colors = node_colors or graph_data['node_colors']
node_positions = graph_data['node_positions']
node_label_pos = graph_data['node_label_positions']
edge_weights = graph_data['edge_weights']
# set the size of the plot
plt.figure(figsize=(18, 13))
# draw the graph (both nodes and edges) with locations from romania_locations
nx.draw(G, pos={k: node_positions[k] for k in G.nodes()},
node_color=[node_colors[node] for node in G.nodes()], linewidths=0.3, edgecolors='k')
# draw labels for nodes
node_label_handles = nx.draw_networkx_labels(G, pos=node_label_pos, font_size=14)
# add a white bounding box behind the node labels
[label.set_bbox(dict(facecolor='white', edgecolor='none')) for label in node_label_handles.values()]
# add edge lables to the graph
nx.draw_networkx_edge_labels(G, pos=node_positions, edge_labels=edge_weights, font_size=14)
# add a legend
white_circle = lines.Line2D([], [], color="white", marker='o', markersize=15, markerfacecolor="white")
orange_circle = lines.Line2D([], [], color="orange", marker='o', markersize=15, markerfacecolor="orange")
red_circle = lines.Line2D([], [], color="red", marker='o', markersize=15, markerfacecolor="red")
gray_circle = lines.Line2D([], [], color="gray", marker='o', markersize=15, markerfacecolor="gray")
green_circle = lines.Line2D([], [], color="green", marker='o', markersize=15, markerfacecolor="green")
plt.legend((white_circle, orange_circle, red_circle, gray_circle, green_circle),
('Un-explored', 'Frontier', 'Currently Exploring', 'Explored', 'Final Solution'),
numpoints=1, prop={'size': 16}, loc=(.8, .75))
# show the plot. No need to use in notebooks. nx.draw will show the graph itself.
plt.show()
# helper functions for visualisations
def final_path_colors(initial_node_colors, problem, solution):
"Return a node_colors dict of the final path provided the problem and solution."
# get initial node colors
final_colors = dict(initial_node_colors)
# color all the nodes in solution and starting node to green
final_colors[problem.initial] = "green"
for node in solution:
final_colors[node] = "green"
return final_colors
def display_visual(graph_data, user_input, algorithm=None, problem=None):
initial_node_colors = graph_data['node_colors']
if user_input == False:
def slider_callback(iteration):
# don't show graph for the first time running the cell calling this function
try:
show_map(graph_data, node_colors=all_node_colors[iteration])
except:
pass
def visualize_callback(Visualize):
if Visualize is True:
button.value = False
global all_node_colors
iterations, all_node_colors, node = algorithm(problem)
solution = node.solution()
all_node_colors.append(final_path_colors(all_node_colors[0], problem, solution))
slider.max = len(all_node_colors) - 1
for i in range(slider.max + 1):
slider.value = i
# time.sleep(.5)
slider = widgets.IntSlider(min=0, max=1, step=1, value=0)
slider_visual = widgets.interactive(slider_callback, iteration=slider)
display(slider_visual)
button = widgets.ToggleButton(value=False)
button_visual = widgets.interactive(visualize_callback, Visualize=button)
display(button_visual)
if user_input == True:
node_colors = dict(initial_node_colors)
if isinstance(algorithm, dict):
assert set(algorithm.keys()).issubset({"Breadth First Tree Search",
"Depth First Tree Search",
"Breadth First Search",
"Depth First Graph Search",
"Best First Graph Search",
"Uniform Cost Search",