-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
100 lines (86 loc) · 3.5 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from gymnasium import ObservationWrapper
from typing import Callable, Tuple
from gymnasium.spaces import Box
import numpy as np
import cv2
import gym
class PreprocessAtari(ObservationWrapper):
"""
Wrapper class for preprocessing Atari observations.
Args:
env (gym.Env): Environment to wrap.
height (int): Height of the output frame.
width (int): Width of the output frame.
crop (Callable[[np.ndarray], np.ndarray]): Function for cropping the input frame.
dim_order (str): Order of dimensions, 'tensorflow' or 'pytorch'.
color (bool): Flag for color frames.
n_frames (int): Number of frames to stack.
Attributes:
img_size (Tuple[int, int]): Size of the output frame.
crop (Callable[[np.ndarray], np.ndarray]): Function for cropping the input frame.
dim_order (str): Order of dimensions.
color (bool): Flag for color frames.
frame_stack (int): Number of frames to stack.
observation_space (gym.spaces.Box): Observation space of the wrapper.
frames (np.ndarray): Buffer for stacked frames.
"""
def __init__(
self,
env : gym.Env,
height : int = 42,
width : int = 42,
crop : Callable[[np.ndarray], np.ndarray] = lambda img: img,
dim_order : str = 'pytorch',
color : bool = False,
n_frames : int = 4
) -> None:
super().__init__(env) #type: ignore
self.img_size : Tuple[int, int] = (height, width)
self.crop : Callable[[np.ndarray], np.ndarray] = crop
self.dim_order : str = dim_order
self.color : bool = color
self.frame_stack : int = n_frames
n_channels : int = 3 * n_frames if color else n_frames
obs_shape : Tuple[int, ...] = {'tensorflow': (height, width, n_channels), 'pytorch': (n_channels, height, width)}[dim_order]
self.observation_space : Box = Box(0.0, 1.0, obs_shape)
self.frames : np.ndarray = np.zeros(obs_shape, dtype=np.float32)
def reset(self) -> Tuple[np.ndarray, dict]:
"""
Reset the environment and the frame buffer.
Returns:
Tuple[np.ndarray, dict]: Initial observation and environment information.
"""
self.frames = np.zeros_like(self.frames)
obs, info = self.env.reset()
self.update_buffer(obs)
return self.frames, info
def observation(self, img : np.ndarray) -> np.ndarray:
"""
Preprocess the input frame and update the frame buffer.
Args:
img (np.ndarray): Input frame.
Returns:
np.ndarray: Preprocessed frame.
"""
img = self.crop(img)
img = cv2.resize(img, self.img_size)
if not self.color:
if len(img.shape) == 3 and img.shape[2] == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = img.astype('float32') / 255.
if self.color:
self.frames = np.roll(self.frames, shift=-3, axis=0)
else:
self.frames = np.roll(self.frames, shift=-1, axis=0)
if self.color:
self.frames[-3:] = img
else:
self.frames[-1] = img
return self.frames
def update_buffer(self, obs : np.ndarray) -> None:
"""
Update the frame buffer with a new observation.
Args:
obs: New observation.
"""
self.frames = self.observation(obs)