-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_network.py
49 lines (41 loc) · 1.97 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from torch.nn import functional as F
from typing import Tuple
from torch import nn
import torch
class NeuralNetwork(nn.Module):
"""
Neural Network class representing the Q-function approximator.
Args:
action_size (int): Number of possible actions.
Attributes:
conv1 to fc2a (nn.Module): Layers of the neural network for action values.
fc2s (nn.Module): Layer for state values.
"""
def __init__(self, action_size : int) -> None:
super().__init__()
self.conv1 : nn.Conv2d = nn.Conv2d(in_channels=4, out_channels=32, kernel_size=3, stride=2)
self.conv2 : nn.Conv2d = nn.Conv2d(in_channels=self.conv1.out_channels, out_channels=32, kernel_size=3, stride=2)
self.conv3 : nn.Conv2d = nn.Conv2d(in_channels=self.conv2.out_channels, out_channels=32, kernel_size=3, stride=2)
self.flatten : nn.Flatten = torch.nn.Flatten()
self.fc1 : nn.Linear = torch.nn.Linear(in_features=512, out_features=128)
self.fc2a : nn.Linear = torch.nn.Linear(in_features=self.fc1.out_features, out_features=action_size)
self.fc2s : nn.Linear = torch.nn.Linear(in_features=self.fc1.out_features, out_features=1)
def forward(self, state : torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass through the neural network.
Args:
state (torch.Tensor): Input state.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Output Q-values for each action and state value.
"""
x : torch.Tensor = self.conv1(state)
x : torch.Tensor = F.relu(x)
x : torch.Tensor = self.conv2(x)
x : torch.Tensor = F.relu(x)
x : torch.Tensor = self.conv3(x)
x : torch.Tensor = self.flatten(x)
x : torch.Tensor = self.fc1(x)
x : torch.Tensor = F.relu(x)
action_values : torch.Tensor = self.fc2a(x)
state_value : torch.Tensor = self.fc2s(x)[0]
return action_values, state_value