-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
84 lines (77 loc) · 2.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import hydra
from hydra.core.config_store import ConfigStore
from config.config import Icons50Config
from ds.dataset import Icons50Dataset, read_classes
from model.cgan import create_discriminator, create_generator, create_cgan
from model.train import save_models, train_cgan
cs = ConfigStore.instance()
cs.store(name="icons50_config", node=Icons50Config)
@hydra.main(version_base=None, config_path="config", config_name="config")
def main(cfg: Icons50Config) -> None:
""" Main function """
# suppress TensorFlow INFO messages
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
# Read classes
classes = read_classes(cfg.paths.classes_path)
# Load dataset
dataset = Icons50Dataset.from_pickle(
path=cfg.paths.data_path,
classes=classes,
)
# Show dataset summary
dataset.summary()
# Preprocess the dataset
dataset.preprocess()
# Filter the dataset
if cfg.params.top_k > 0:
dataset = dataset.filter(cfg.params.top_k)
cfg.params.num_classes = cfg.params.top_k
# Shuffle the dataset
if cfg.params.shuffle:
dataset.shuffle()
# create the discriminator
discriminator = create_discriminator(
image_size=cfg.params.image_size,
channels=cfg.params.channels,
num_classes=cfg.params.num_classes,
lr=cfg.optim.lr,
beta_1=cfg.optim.beta_1,
)
discriminator.summary()
# create the generator
generator = create_generator(
latent_dim=cfg.params.latent_dim,
num_classes=cfg.params.num_classes,
)
generator.summary()
# create the gan
cgan = create_cgan(
generator=generator,
discriminator=discriminator,
lr=cfg.optim.lr,
beta_1=cfg.optim.beta_1
)
cgan.summary()
# train model
history = train_cgan(
cgan=cgan,
generator=generator,
discriminator=discriminator,
dataset=dataset,
latent_dim=cfg.params.latent_dim,
epochs=cfg.params.epochs,
batch_size=cfg.params.batch_size,
num_classes=cfg.params.num_classes
)
# plot history
history.plot()
# save models
save_models(
generator=generator,
discriminator=discriminator,
cgan=cgan,
path=cfg.paths.save_path if cfg.params.top_k == 0 else cfg.paths.filt_save_path,
)
if __name__ == "__main__":
main()