To run the trankit training, execute the following command:
python train.py with \
train_bio_fpath='./data/train-wo-asia_bibi_.bio' \
dev_bio_fpath='./data/dev-w-asia_bibi_.bio' \
-l WARNING \
-F outputs
This will use sacred
to save the run's configuration into the outputs
directory.
If you are trining on multiple GPU devices, the following may be useful:
$ export CUDA_VISIBLE_DEVICES=1
wget http://nlp.uoregon.edu/download/trankit/bulgarian.zip
unzip bulgarian.zip -d bulgarian
wget http://nlp.uoregon.edu/download/trankit/czech.zip
unzip czech.zip -d czech
wget http://nlp.uoregon.edu/download/trankit/polish.zip
unzip polish.zip -d polish
wget http://nlp.uoregon.edu/download/trankit/russian.zip
unzip russian.zip -d russian
wget http://nlp.uoregon.edu/download/trankit/slovenian.zip
unzip slovenian.zip -d slovenian
wget http://nlp.uoregon.edu/download/trankit/ukrainian.zip
unzip ukrainian.zip -d ukrainian
python predict.py with \
lang=pl \
raw_data_dir='../bsnlp2021_train_r1/raw/ryanair/pl/' \
output_data_dir='./predictions/ryanair/pl/' -F predict_outputs
for lang in bg cs pl ru sl uk;
do
python predict.py with \
lang=$lang \
save_dir='./save_dir_best/' \
raw_data_dir="../bsnlp2021_train_r1/raw/ryanair/$lang/" \
output_data_dir="./predictions/ryanair/$lang/" \
-F predict_outputs;
done