Skip to content

Latest commit

 

History

History

trankit

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Training with trankit

To run the trankit training, execute the following command:

    python train.py with \
        train_bio_fpath='./data/train-wo-asia_bibi_.bio' \
        dev_bio_fpath='./data/dev-w-asia_bibi_.bio' \
        -l WARNING \
        -F outputs

This will use sacred to save the run's configuration into the outputs directory.

If you are trining on multiple GPU devices, the following may be useful:

    $ export CUDA_VISIBLE_DEVICES=1

Downloading pre-trained trankit pipelines

wget http://nlp.uoregon.edu/download/trankit/bulgarian.zip
unzip bulgarian.zip -d bulgarian

wget http://nlp.uoregon.edu/download/trankit/czech.zip
unzip czech.zip -d czech

wget http://nlp.uoregon.edu/download/trankit/polish.zip
unzip polish.zip -d polish

wget http://nlp.uoregon.edu/download/trankit/russian.zip
unzip russian.zip -d russian

wget http://nlp.uoregon.edu/download/trankit/slovenian.zip
unzip slovenian.zip -d slovenian

wget http://nlp.uoregon.edu/download/trankit/ukrainian.zip
unzip ukrainian.zip -d ukrainian

Generating predictions

    python predict.py with \
        lang=pl \
        raw_data_dir='../bsnlp2021_train_r1/raw/ryanair/pl/' \
        output_data_dir='./predictions/ryanair/pl/' -F predict_outputs
for lang in bg cs pl ru sl uk;
do
    python predict.py with \
        lang=$lang \
        save_dir='./save_dir_best/' \
        raw_data_dir="../bsnlp2021_train_r1/raw/ryanair/$lang/" \
        output_data_dir="./predictions/ryanair/$lang/" \
        -F predict_outputs;
done