-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy patheval_llama_ppl.py
executable file
·286 lines (235 loc) · 10.7 KB
/
eval_llama_ppl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Code adapted from https://github.com/locuslab/wanda/blob/main/main.py
import argparse
from importlib.metadata import version
import os
import time
import fnmatch
import random
import numpy as np
from collections import defaultdict
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
# Set seed for reproducibility
def set_seed(seed):
np.random.seed(seed)
torch.random.manual_seed(seed)
# Wrapper for tokenized input IDs
class TokenizerWrapper:
def __init__(self, input_ids):
self.input_ids = input_ids
# Load and process wikitext2 dataset
def get_wikitext2(nsamples, seed, seqlen, tokenizer):
# Load train and test datasets
traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train')
testdata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
# Encode datasets
trainenc = tokenizer(" ".join(traindata['text']), return_tensors='pt')
testenc = tokenizer("\n\n".join(testdata['text']), return_tensors='pt')
# Generate samples from training set
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
# Load and process c4 dataset
def get_c4(nsamples, seed, seqlen, tokenizer):
# Load train and validation datasets
traindata = load_dataset('allenai/c4', 'allenai--c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train')
valdata = load_dataset('allenai/c4', 'allenai--c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation')
# Generate samples from training set
random.seed(seed)
trainloader = []
for _ in range(nsamples):
while True:
i = random.randint(0, len(traindata) - 1)
trainenc = tokenizer(traindata[i]['text'], return_tensors='pt')
if trainenc.input_ids.shape[1] > seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
# Prepare validation dataset
valenc = tokenizer(' '.join(valdata[:1100]['text']), return_tensors='pt')
valenc = valenc.input_ids[:, :(256 * seqlen)]
valenc = TokenizerWrapper(valenc)
return trainloader, valenc
# Function to select the appropriate loader based on dataset name
def get_loaders(name, nsamples=128, seed=0, seqlen=4096, tokenizer=None):
if 'wikitext2' in name:
return get_wikitext2(nsamples, seed, seqlen, tokenizer)
if "c4" in name:
return get_c4(nsamples, seed, seqlen, tokenizer)
# Function to evaluate perplexity (ppl) on a specified model and tokenizer
def eval_ppl(args, model, tokenizer, device=torch.device("cuda:0")):
# Set dataset
dataset = "wikitext2"
# Print status
print(f"evaluating on {dataset}")
# Get the test loader
_, testloader = get_loaders(
dataset, seed=0, seqlen=model.seqlen, tokenizer=tokenizer,
)
# Evaluate ppl in no grad context to avoid updating the model
with torch.no_grad():
ppl_test = eval_ppl_wikitext(model, testloader, 1, device)
return ppl_test
# Function to evaluate perplexity (ppl) specifically on the wikitext dataset
def eval_ppl_wikitext_train(model, trainloader, bs=1, device=None):
# Get input IDs
# testenc = testenc.input_ids
# Calculate number of samples
# nsamples = testenc.numel() // model.seqlen
nsamples = len(trainloader)
# List to store negative log likelihoods
nlls = []
print(f"nsamples {nsamples}")
# Loop through each batch
for i in range(0,nsamples,bs):
if i % 50 == 0:
print(f"sample {i}")
# Calculate end index
j = min(i+bs, nsamples)
# Prepare inputs and move to device
# inputs = testenc[:,(i * model.seqlen):(j * model.seqlen)].to(device)
inputs = trainloader[i][0].to(device)
inputs = inputs.reshape(j-i, model.seqlen)
# Forward pass through the model
lm_logits = model(inputs).logits
# Shift logits and labels for next token prediction
shift_logits = lm_logits[:, :-1, :].contiguous()
shift_labels = inputs[:, 1:]
# Compute loss
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.reshape(-1, shift_logits.size(-1)), shift_labels.reshape(-1))
# Calculate negative log likelihood
neg_log_likelihood = loss.float() * model.seqlen * (j-i)
# Append to list of negative log likelihoods
nlls.append(neg_log_likelihood)
# Compute perplexity
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen))
# Empty CUDA cache to save memory
torch.cuda.empty_cache()
return ppl.item()
# Function to evaluate perplexity (ppl) specifically on the wikitext dataset
def eval_ppl_wikitext(model, testenc, bs=1, device=None):
# Get input IDs
testenc = testenc.input_ids
# Calculate number of samples
nsamples = testenc.numel() // model.seqlen
# List to store negative log likelihoods
nlls = []
print(f"nsamples {nsamples}")
# Loop through each batch
for i in range(0,nsamples,bs):
if i % 50 == 0:
print(f"sample {i}")
# Calculate end index
j = min(i+bs, nsamples)
# Prepare inputs and move to device
inputs = testenc[:,(i * model.seqlen):(j * model.seqlen)].to(device)
inputs = inputs.reshape(j-i, model.seqlen)
# Forward pass through the model
lm_logits = model(inputs).logits
# Shift logits and labels for next token prediction
shift_logits = lm_logits[:, :-1, :].contiguous()
shift_labels = inputs[:, 1:]
# Compute loss
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.reshape(-1, shift_logits.size(-1)), shift_labels.reshape(-1))
# Calculate negative log likelihood
neg_log_likelihood = loss.float() * model.seqlen * (j-i)
# Append to list of negative log likelihoods
nlls.append(neg_log_likelihood)
# Compute perplexity
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen))
# Empty CUDA cache to save memory
torch.cuda.empty_cache()
return ppl.item()
print('torch', version('torch'))
print('transformers', version('transformers'))
print('accelerate', version('accelerate'))
print('# of gpus: ', torch.cuda.device_count())
def get_llm(model_name, cache_dir="./assets/cache"):
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
cache_dir=cache_dir,
device_map="auto"
)
model.seqlen = 4096 if model.config.max_position_embeddings>=4096 else model.config.max_position_embeddings
return model
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, help='LLaMA model')
parser.add_argument('--mask', type=str, default=None, help="Path to the mask ckpt")
parser.add_argument('--seed', type=int, default=0, help='Seed for sampling the calibration data.')
parser.add_argument('--nsamples', type=int, default=128, help='Number of calibration samples.')
parser.add_argument('--sparsity_ratio', type=float, default=0, help='Sparsity level')
parser.add_argument("--sparsity_type", type=str, choices=["unstructured", "4:8", "2:4"])
parser.add_argument("--prune_method", type=str, choices=["magnitude", "wanda", "sparsegpt",
"ablate_mag_seq", "ablate_wanda_seq", "ablate_mag_iter", "ablate_wanda_iter", "search"])
parser.add_argument("--cache_dir", default="./assets/cache", type=str )
parser.add_argument('--use_variant', action="store_true", help="whether to use the wanda variant described in the appendix")
parser.add_argument('--save', type=str, default=None, help='Path to save results.')
parser.add_argument('--save_model', type=str, default=None, help='Path to save the pruned model.')
args = parser.parse_args()
# Setting seeds for reproducibility
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
model_name = args.model.split("/")[-1]
print(f"loading llm model {args.model}")
model = get_llm(args.model, args.cache_dir)
if args.mask is not None:
if args.mask.endswith(".pt"): # raw mask ckpt, this will be quite large (~6GB for 7b model)
mask_ckpt = torch.load(args.mask, map_location='cpu')
model_state = model.state_dict()
for k, v in mask_ckpt.items():
k_original = k.replace(".mask", "")
model_state[k_original] *= v.to(model_state[k_original].device).float()
model.load_state_dict(model_state)
else:
if args.mask.endswith(".npz"): # compressed mask ckpt, this will be much smaller (~500MB for 7b model)
mask_ckpt = np.load(args.mask)
else:
from huggingface_hub import hf_hub_download
downloaded_mask = hf_hub_download(repo_id=args.mask, filename="mask_compressed.npz")
mask_ckpt = np.load(downloaded_mask)
model_state = model.state_dict()
for k, v in mask_ckpt.items():
k_original = k.replace(".mask", "")
v = np.unpackbits(v) # to bits
mask = torch.from_numpy(v).to(model_state[k_original].device).float()
mask = mask.view(*model_state[k_original].shape) # reshape the mask
model_state[k_original] *= mask # apply the mask
model.load_state_dict(model_state)
model.eval()
for name, param in model.named_parameters():
sparsity = (param==0).float().mean().item()
print(f"{name} - sparsity {sparsity:.4f}")
# Check 2:4
if abs(sparsity-0.5)<0.0001:
param_reshaped = param.reshape(-1, 4)
mask_sum = (param_reshaped==0).sum(dim=-1)
assert (mask_sum>=2).all()
tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=False)
device = torch.device("cuda:0")
if "30b" in args.model or "65b" in args.model: # for 30b and 65b we use device_map to load onto multiple A6000 GPUs, thus the processing here.
device = model.hf_device_map["lm_head"]
print("use device ", device)
ppl_test = eval_ppl(args, model, tokenizer, device)
print(f"wikitext perplexity {ppl_test}")
if args.save_model:
model.save_pretrained(args.save_model)
tokenizer.save_pretrained(args.save_model)
if __name__ == '__main__':
main()