-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
1840 lines (1426 loc) · 85.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os.path
import cv2
import torch
import numpy as np
import imageio, trimesh
import json
import logging
import wandb
import common
import copy
from itertools import permutations
from tqdm import tqdm
from os.path import join as pjoin
from utils.nerf_utils import ray_box_intersection_batch, \
get_sdf_loss, get_camera_rays_np, get_pixel_coords_np, to8b
from utils.geometry_utils import to_homo, transform_pts, OctreeManager, get_voxel_pts, \
DepthFuser, VoxelVisibility, VoxelSDF, sdf_voxel_from_mesh
from network import PartArticulationNet, SHEncoder, GridEncoder, FeatureVolume, NeRFSmall
from utils.articulation_utils import save_axis_mesh, interpret_transforms, eval_axis_and_state, read_gt as read_axis_gt
from eval.eval_mesh import eval_CD, cluster_meshes
"""
train_loop(batch of rays): call [render], compute losses
- train_loop_forward: similar
render: call [batchify_rays], split the results into ['rgb_map'] and others
batchify_rays: call [render_rays] in chunks, concat the results
render_rays: sample points, run [run_network] or [run_network_for_forward_only]
"""
def inverse_transform(transform):
rot = transform['rot']
trans = transform['trans']
return {'rot': rot.T, 'trans': -np.matmul(rot.T, trans.reshape(3, 1)).reshape(-1)}
def batchify(fn, chunk):
"""Constructs a version of 'fn' that applies to smaller batches.
"""
if chunk is None:
return fn
def ret(inputs):
return torch.cat([fn(inputs[i:i + chunk]) for i in range(0, inputs.shape[0], chunk)], 0)
return ret
def compute_near_far_and_filter_rays(cam_in_world, rays, cfg):
'''
@cam_in_world: in normalized space
@rays: (...,D) in camera
Return:
(-1,D+2) with near far
'''
D = rays.shape[-1]
rays = rays.reshape(-1, D)
dirs_unit = rays[:, :3] / np.linalg.norm(rays[:, :3], axis=-1).reshape(-1, 1)
dirs = (cam_in_world[:3, :3] @ rays[:, :3].T).T
origins = (cam_in_world @ to_homo(np.zeros(dirs.shape)).T).T[:, :3]
bounds = np.array(cfg['bounding_box']).reshape(2, 3)
tmin, tmax = ray_box_intersection_batch(origins, dirs, bounds)
tmin = tmin.data.cpu().numpy()
tmax = tmax.data.cpu().numpy()
ishit = tmin >= 0
near = (dirs_unit * tmin.reshape(-1, 1))[:, 2]
far = (dirs_unit * tmax.reshape(-1, 1))[:, 2]
good_rays = rays[ishit]
near = near[ishit]
far = far[ishit]
near = np.abs(near)
far = np.abs(far)
good_rays = np.concatenate((good_rays, near.reshape(-1, 1), far.reshape(-1, 1)), axis=-1) # (N,8+2)
return good_rays
@torch.no_grad()
def sample_rays_uniform(N_samples, near, far, lindisp=False, perturb=True):
'''
@near: (N_ray,1)
'''
N_ray = near.shape[0]
t_vals = torch.linspace(0., 1., steps=N_samples, device=near.device).reshape(1, -1)
if not lindisp:
z_vals = near * (1. - t_vals) + far * (t_vals)
else:
z_vals = 1. / (1. / near * (1. - t_vals) + 1. / far * (t_vals)) # (N_ray,N_sample)
if perturb > 0.:
mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
upper = torch.cat([mids, z_vals[..., -1:]], -1)
lower = torch.cat([z_vals[..., :1], mids], -1)
t_rand = torch.rand(z_vals.shape, device=far.device)
z_vals = lower + (upper - lower) * t_rand
z_vals = torch.clip(z_vals, near, far)
return z_vals.reshape(N_ray, N_samples)
class DataLoader:
def __init__(self, rays, batch_size):
self.rays = rays
self.batch_size = batch_size
self.pos = 0
self.ids = torch.randperm(len(self.rays))
def __next__(self):
if self.pos + self.batch_size < len(self.ids):
self.batch_ray_ids = self.ids[self.pos:self.pos + self.batch_size]
out = self.rays[self.batch_ray_ids]
self.pos += self.batch_size
return out.cuda()
self.ids = torch.randperm(len(self.rays))
self.pos = self.batch_size
self.batch_ray_ids = self.ids[:self.batch_size]
return self.rays[self.batch_ray_ids].cuda()
class IndexDataLoader:
def __init__(self, indices, batch_size):
self.indices = indices
self.batch_size = batch_size
self.pos = 0
self.ids = torch.randperm(len(self.indices))
def __next__(self):
if self.pos + self.batch_size < len(self.ids):
out = self.indices[self.ids[self.pos:self.pos + self.batch_size]]
self.pos += self.batch_size
return out
self.ids = torch.randperm(len(self.indices))
self.pos = self.batch_size
return self.indices[self.ids[:self.batch_size]]
class ArtiModel:
def __init__(self, cfg, frame_names, images, depths, masks, poses, timesteps, K,
build_octree_pcd=None, use_wandb=True, exp_name=None, max_timestep=0,
test_only=False):
'''
normal_maps: use None
poses: opengl convention, camera pose w.r.t. object(object frame normalized to [-1, 1] or [0, 1]); z- forward, y up;
K: cam intrinsics
'''
self.cfg = cfg
self.frame_names = frame_names
self.frame_name2id = {'_'.join(frame_name.split('/')[-1].split('.')[0].split('_')[-2:]): id for id, frame_name in enumerate(frame_names)}
self.images = images
self.depths = depths
self.masks = masks
self.poses = poses
self.timesteps = timesteps
self.all_timesteps = np.unique(timesteps)
self.all_timesteps.sort()
self.all_timesteps = torch.tensor(self.all_timesteps).cuda()
self.max_timestep = max_timestep
self.cnc_timesteps = {'init': 0.0, 'last': (self.max_timestep - 1.0) / self.max_timestep}
assert self.cnc_timesteps['last'] == self.all_timesteps[-1]
self.K = K.copy()
self.load_gt()
self.build_octree_pts = np.asarray(build_octree_pcd.points).copy() # Make it pickable
self.save_dir = self.cfg['save_dir']
self.H, self.W = self.images[0].shape[:2]
self.tensor_K = torch.tensor(self.K, device='cuda:0', dtype=torch.float32)
self.octree_m = None
if self.cfg['use_octree']:
self.build_octree()
self.create_nerf()
self.create_optimizer()
self.amp_scaler = torch.cuda.amp.GradScaler(enabled=self.cfg['amp'])
self.total_step = self.cfg['n_step']
self.global_step = 0
self.freeze_recon_step = self.cfg['freeze_recon_step']
self.c2w_array = torch.tensor(poses).float().cuda()
if not test_only:
rays_ = {cnc_name: [] for cnc_name in self.cnc_timesteps}
num_rays_ = {cnc_name: 0 for cnc_name in self.cnc_timesteps}
pixel_to_ray_id = {cnc_name: {} for cnc_name in self.cnc_timesteps}
for frame_i in tqdm(range(len(self.timesteps))):
for cnc_name in self.cnc_timesteps:
if self.timesteps[frame_i] == self.cnc_timesteps[cnc_name]:
frame_rays, frame_pixel_to_ray_id = self.make_frame_rays(frame_i)
rays_[cnc_name].append(frame_rays)
frame_pixel_to_ray_id[np.where(frame_pixel_to_ray_id >= 0)] += num_rays_[cnc_name]
pixel_to_ray_id[cnc_name][frame_i] = frame_pixel_to_ray_id
num_rays_[cnc_name] += len(frame_rays)
self.pixel_to_ray_id = pixel_to_ray_id
rays_dict = {}
for cnc_name in self.cnc_timesteps:
rays_dict[cnc_name] = np.concatenate(rays_[cnc_name], axis=0)
for cnc_name in self.cnc_timesteps:
rays_dict[cnc_name] = torch.tensor(rays_dict[cnc_name], dtype=torch.float).cuda()
self.rays_dict = rays_dict
self.data_loader = {cnc_name: DataLoader(rays=self.rays_dict[cnc_name], batch_size=self.cfg['N_rand'])
for cnc_name in self.rays_dict}
self.loss_weights = {key: torch.tensor(value).float().cuda() for key, value in self.cfg['loss_weights'].items()}
self.loss_schedule = {} if 'loss_schedule' not in self.cfg else self.cfg['loss_schedule']
self.use_wandb = use_wandb and not test_only
if self.use_wandb:
wandb.init(project='art-nerf', name=exp_name)
wandb.init(config=self.cfg)
self.depth_fuser = {}
for cnc_name in self.cnc_timesteps:
cur_frame_idx = np.where(self.timesteps == self.cnc_timesteps[cnc_name])
self.depth_fuser[cnc_name] = DepthFuser(self.tensor_K, self.c2w_array[cur_frame_idx],
self.depths[cur_frame_idx].squeeze(-1),
self.masks[cur_frame_idx].squeeze(-1),
self.get_truncation(),
near=self.cfg['near'] * self.cfg['sc_factor'],
far=self.cfg['far'] * self.cfg['sc_factor'])
self.load_visibility_grid()
def load_visibility_grid(self):
self.visibility_grid = {}
for cnc_name in self.cnc_timesteps:
visibility_path = pjoin(self.cfg['data_dir'], f'{cnc_name}_visibility.npz')
if os.path.exists(visibility_path):
visibility = np.load(visibility_path, allow_pickle=True)['data']
else:
query_pts = get_voxel_pts(self.cfg['sdf_voxel_size'])
old_shape = tuple(query_pts.shape[:3])
query_pts = torch.tensor(query_pts.astype(np.float32).reshape(-1, 3)).float().cuda()
if self.octree_m is not None:
vox_size = self.cfg['octree_raytracing_voxel_size'] * self.cfg['sc_factor']
level = int(np.floor(np.log2(2.0 / vox_size)))
chunk = 160000
all_valid = []
for i in range(0, query_pts.shape[0], chunk):
cur_pts = query_pts[i: i + chunk]
center_ids = self.octree_m.get_center_ids(cur_pts, level)
valid = center_ids >= 0
all_valid.append(valid)
valid = torch.cat(all_valid, dim=0)
else:
valid = torch.ones(len(query_pts), dtype=bool).cuda()
flat = query_pts[valid]
chunk = 160000
observed = []
for i in range(0, flat.shape[0], chunk):
observed.append(self.depth_fuser[cnc_name].query(flat[i:i + chunk]))
observed = torch.cat(observed, dim=0)
visibility = np.zeros(len(query_pts), dtype=bool)
visibility[valid.cpu().numpy()] = observed.cpu().numpy()
np.savez_compressed(visibility_path, data=visibility.reshape(old_shape))
visibility = visibility.reshape(old_shape)
self.visibility_grid[cnc_name] = VoxelVisibility(visibility)
def initialize_correspondence(self):
self.correspondence = {cnc_name: [] for cnc_name in self.cnc_timesteps}
self.corr_src_id_slice = 0
self.corr_tgt_frame_slice = 1
self.corr_tgt_pixel_silce = [2, 3]
def load_correspondence(self, corr_list, downsample=10):
def rev_pixel(pixel):
return pixel * np.array([1, -1]).reshape(1, 2) + np.array([0, self.H - 1]).reshape(1, 2)
for corr in corr_list:
for order in [1, -1]:
src_name, tgt_name = list(corr.keys())[::order]
src_pixel, tgt_pixel = corr[src_name], corr[tgt_name] # smaller coords are at the top - the same index to use for images
src_pixel = rev_pixel(src_pixel)
tgt_pixel = rev_pixel(tgt_pixel)
# however, the coords here are - smaller at the bottom
cnc_name = {0: 'init', 1: 'last'}[int(src_name.split('_')[0])]
if src_name not in self.frame_name2id or tgt_name not in self.frame_name2id:
continue
src_frame_id = self.frame_name2id[src_name]
tgt_frame_id = self.frame_name2id[tgt_name]
src_idx = src_pixel[:, 1] * self.W + src_pixel[:, 0]
src_ray_ids = self.pixel_to_ray_id[cnc_name][src_frame_id][src_idx].reshape(-1, 1)
valid_idx = np.where(src_ray_ids >= 0)[0]
target_length = max(500, len(valid_idx) // downsample)
final_idx = np.random.permutation(valid_idx)[:target_length]
tgt_frame_ids = np.ones_like(src_ray_ids) * tgt_frame_id
cur_corr = np.concatenate([src_ray_ids, tgt_frame_ids, tgt_pixel], axis=-1)
self.correspondence[cnc_name].append(cur_corr[final_idx])
def finalize_correspondence(self):
self.correspondence = {cnc_name: None if len(corr_list) == 0 else np.concatenate(corr_list, axis=0) for cnc_name, corr_list in self.correspondence.items()}
upper_limit = self.H * self.W * len(self.frame_names) * 5
self.correspondence = {cnc_name: None if corr is None else torch.tensor(corr[np.random.permutation(len(corr))[:upper_limit]]).cuda() for cnc_name, corr in self.correspondence.items()}
self.corr_loader = {cnc_name: None if self.correspondence[cnc_name] is None else DataLoader(rays=self.correspondence[cnc_name], batch_size=self.cfg['N_rand']) for cnc_name in self.correspondence}
def plot_loss(self, loss_dict, step):
if self.use_wandb:
wandb.log(loss_dict, step=step)
def create_nerf(self, device=torch.device("cuda")):
models = {}
for cnc_name in self.cnc_timesteps:
embed_fn = GridEncoder(input_dim=3, n_levels=self.cfg['num_levels'],
log2_hashmap_size=self.cfg['log2_hashmap_size'],
desired_resolution=self.cfg['finest_res'], base_resolution=self.cfg['base_res'],
level_dim=self.cfg['feature_grid_dim'])
embed_fn = embed_fn.to(device)
input_ch = embed_fn.out_dim
models[f'{cnc_name}_embed_fn'] = embed_fn
embeddirs_fn = SHEncoder(self.cfg['multires_views'])
input_ch_views = embeddirs_fn.out_dim
models[f'{cnc_name}_embeddirs_fn'] = embeddirs_fn
model = NeRFSmall(num_layers=2, hidden_dim=64, geo_feat_dim=15, num_layers_color=3, hidden_dim_color=64,
input_ch=input_ch, input_ch_views=input_ch_views).to(device)
model = model.to(device)
models[f'{cnc_name}_model'] = model
embed_bwdflow_fn = FeatureVolume(out_dim=self.cfg['feature_vol_dim'], res=self.cfg['feature_vol_res'], num_dim=3)
embed_bwdflow_fn = embed_bwdflow_fn.to(device)
models[f'{cnc_name}_embed_bwdflow_fn'] = embed_bwdflow_fn
embed_fwdflow_fn = FeatureVolume(out_dim=self.cfg['feature_vol_dim'], res=self.cfg['feature_vol_res'], num_dim=3)
embed_fwdflow_fn = embed_fwdflow_fn.to(device)
models[f'{cnc_name}_embed_fwdflow_fn'] = embed_fwdflow_fn
fwdflow_ch = self.cfg['feature_vol_dim']
if self.cfg['share_motion'] and cnc_name == 'last':
inv_transform = lambda: models['init_deformation_model'].get_raw_slot_transform()
else:
inv_transform = None
deformation_model = PartArticulationNet(device=device, feat_dim=fwdflow_ch,
slot_num=self.cfg['slot_num'],
slot_hard=self.cfg['slot_hard'],
gt_transform=None,
inv_transform=inv_transform,
fix_base=self.cfg.get('fix_base', True),
gt_joint_types=None if not self.cfg['use_gt_joint_type'] else self.gt_joint_types)
deformation_model = deformation_model.to(device)
models[f'{cnc_name}_deformation_model'] = deformation_model
self.models = models
print(models)
def make_frame_rays(self, frame_id):
def get_last_ray_slice_idx(rays, num):
if num == 1:
return rays.shape[-1] - 1
else:
return list(range(rays.shape[-1] - num, rays.shape[-1]))
mask = self.masks[frame_id, ..., 0].copy()
rays = get_camera_rays_np(self.H, self.W,
self.K) # [self.H, self.W, 3] We create rays frame-by-frame to save memory
self.ray_dir_slice = get_last_ray_slice_idx(rays, 3)
rays = np.concatenate([rays, frame_id * np.ones(self.depths[frame_id].shape)], -1) # [H, W, 18]
self.ray_frame_id_slice = get_last_ray_slice_idx(rays, 1)
rays = np.concatenate([rays, self.depths[frame_id]], -1) # [H, W, 7]
self.ray_depth_slice = get_last_ray_slice_idx(rays, 1)
ray_types = np.zeros((self.H, self.W, 1)) # 0 is good; 1 is invalid depth (uncertain)
invalid_depth = ((self.depths[frame_id, ..., 0] < self.cfg['near'] * self.cfg['sc_factor']) | (
self.depths[frame_id, ..., 0] > self.cfg['far'] * self.cfg['sc_factor'])) & (mask > 0)
ray_types[invalid_depth] = 1
rays = np.concatenate((rays, ray_types), axis=-1) # 19
self.ray_type_slice = get_last_ray_slice_idx(rays, 1)
rays = np.concatenate([rays, get_pixel_coords_np(self.H, self.W, self.K)], axis=-1)
self.ray_coords_slice = get_last_ray_slice_idx(rays, 2)
rays = np.concatenate([rays, self.images[frame_id]], -1) # [H, W, 6]
self.ray_rgb_slice = get_last_ray_slice_idx(rays, 3)
rays = np.concatenate([rays, self.masks[frame_id] > 0], -1) # [H, W, 8]
self.ray_mask_slice = get_last_ray_slice_idx(rays, 1)
rays = np.concatenate([rays, self.timesteps[frame_id] * np.ones(self.depths[frame_id].shape)], -1) # 20
self.ray_time_slice = get_last_ray_slice_idx(rays, 1)
n = rays.shape[-1]
dilate = 60
kernel = np.ones((dilate, dilate), np.uint8)
mask = cv2.dilate(mask, kernel, iterations=1)
if self.cfg['rays_valid_depth_only']:
mask[invalid_depth] = 0
vs, us = np.where(mask > 0)
cur_rays = rays[vs, us].reshape(-1, n)
cur_rays = cur_rays[cur_rays[:, self.ray_type_slice] == 0]
cur_rays = compute_near_far_and_filter_rays(self.poses[frame_id], cur_rays, self.cfg)
self.ray_near_slice, self.ray_far_slice = get_last_ray_slice_idx(rays, 2)
if self.cfg['use_octree']:
rays_o_world = (self.poses[frame_id] @ to_homo(np.zeros((len(cur_rays), 3))).T).T[:, :3]
rays_o_world = torch.from_numpy(rays_o_world).cuda().float()
rays_unit_d_cam = cur_rays[:, :3] / np.linalg.norm(cur_rays[:, :3], axis=-1).reshape(-1, 1)
rays_d_world = (self.poses[frame_id][:3, :3] @ rays_unit_d_cam.T).T
rays_d_world = torch.from_numpy(rays_d_world).cuda().float()
vox_size = self.cfg['octree_raytracing_voxel_size'] * self.cfg['sc_factor']
level = int(np.floor(np.log2(2.0 / vox_size)))
near, far, _, ray_depths_in_out = self.octree_m.ray_trace(rays_o_world, rays_d_world, level=level)
near = near.cpu().numpy()
valid = (near > 0).reshape(-1)
cur_rays = cur_rays[valid]
cur_ray_coords = cur_rays[:, self.ray_coords_slice] # [N, 2], x in [0, W - 1], y in [0, H - 1]
coords = (cur_ray_coords[:, 1] * self.W + cur_ray_coords[:, 0]).astype(np.int32)
pixel_to_ray_id = np.ones(self.H * self.W) * -1
pixel_to_ray_id[coords] = np.arange(len(coords))
return cur_rays, pixel_to_ray_id
def build_octree(self):
pts = torch.tensor(self.build_octree_pts).cuda().float() # Must be within [-1,1]
octree_smallest_voxel_size = self.cfg['octree_smallest_voxel_size'] * self.cfg['sc_factor']
finest_n_voxels = 2.0 / octree_smallest_voxel_size
max_level = int(np.ceil(np.log2(finest_n_voxels)))
octree_smallest_voxel_size = 2.0 / (2 ** max_level)
dilate_radius = int(np.ceil(self.cfg['octree_dilate_size'] / self.cfg['octree_smallest_voxel_size']))
dilate_radius = max(1, dilate_radius)
logging.info(f"Octree voxel dilate_radius:{dilate_radius}")
shifts = []
for dx in [-1, 0, 1]:
for dy in [-1, 0, 1]:
for dz in [-1, 0, 1]:
shifts.append([dx, dy, dz])
shifts = torch.tensor(shifts).cuda().long() # (27,3)
coords = torch.floor((pts + 1) / octree_smallest_voxel_size).long() # (N,3)
dilated_coords = coords.detach().clone()
for iter in range(dilate_radius):
dilated_coords = (dilated_coords[None].expand(shifts.shape[0], -1, -1) + shifts[:, None]).reshape(-1, 3)
dilated_coords = torch.unique(dilated_coords, dim=0)
pts = (dilated_coords + 0.5) * octree_smallest_voxel_size - 1
pts = torch.clip(pts, -1, 1)
assert pts.min() >= -1 and pts.max() <= 1
self.octree_m = OctreeManager(pts, max_level)
def create_optimizer(self):
params = []
for k in self.models:
if self.models[k] is not None:
params += list(self.models[k].parameters())
param_groups = [{'name': 'basic', 'params': params, 'lr': self.cfg['lrate']}]
self.optimizer = torch.optim.Adam(param_groups, betas=(0.9, 0.999), weight_decay=0, eps=1e-15)
self.param_groups_init = copy.deepcopy(self.optimizer.param_groups)
def load_weights(self, ckpt_path):
print('Reloading from', ckpt_path)
ckpt = torch.load(ckpt_path)
for key in self.models:
self.models[key].load_state_dict(ckpt[key])
if 'octree' in ckpt:
self.octree_m = OctreeManager(octree=ckpt['octree'])
self.optimizer.load_state_dict(ckpt['optimizer'])
self.global_step = ckpt['global_step']
if self.global_step >= self.freeze_recon_step:
self.freeze_recon()
def freeze_recon(self):
print("----------------freeze recon--------------")
for cnc_name in self.cnc_timesteps:
for suffix in ['model', 'embed_fn', 'embeddirs_fn']:
model_key = f'{cnc_name}_{suffix}'
if model_key in self.models:
for param in self.models[model_key].parameters():
param.requires_grad = False
def save_weights(self, output_path):
data = {
'global_step': self.global_step,
'optimizer': self.optimizer.state_dict(),
}
for key in self.models:
data[key] = self.models[key].state_dict()
if self.octree_m is not None:
data['octree'] = self.octree_m.octree
output_dir = os.path.dirname(output_path)
os.makedirs(output_dir, exist_ok=True)
torch.save(data, output_path)
print('Saved checkpoints at', output_path)
latest_path = pjoin(output_dir, 'model_latest.pth')
if latest_path != output_path:
os.system(f'cp {output_path} {latest_path}')
def schedule_lr(self):
for i, param_group in enumerate(self.optimizer.param_groups):
init_lr = self.param_groups_init[i]['lr']
new_lrate = init_lr * (self.cfg['decay_rate'] ** (float(self.global_step) / self.total_step))
param_group['lr'] = new_lrate
def load_gt(self):
gt_path = pjoin(self.cfg['data_dir'], 'gt')
if not os.path.exists(gt_path):
print("No gt")
self.gt_dict = None
return
gt_joint_list = read_axis_gt(pjoin(gt_path, 'trans.json'))
gt_rot_list = [gt_joint['rotation'] for gt_joint in gt_joint_list]
gt_trans_list = [gt_joint['translation'] for gt_joint in gt_joint_list]
self.gt_joint_types = [gt_joint['type'] for gt_joint in gt_joint_list]
gt_dict = {'joint': gt_joint_list, 'rot': gt_rot_list, 'trans': gt_trans_list}
num_joints = len(gt_joint_list)
for gt_name in ('start', 'end'):
if len(gt_joint_list) > 1:
gt_meshes = [pjoin(gt_path, gt_name, f'{gt_name}_{mid}rotate.ply')
for mid in ['', 'static_'] + [f'dynamic_{i}_' for i in range(num_joints)]]
gt_w, gt_s, gt_d = gt_meshes[0], gt_meshes[1], gt_meshes[2:]
else:
gt_w, gt_s, gt_d = [pjoin(gt_path, gt_name, f'{gt_name}_{mid}rotate.ply')
for mid in ['', 'static_', 'dynamic_']]
gt_d = [gt_d]
gt_dict[f'mesh_{gt_name}'] = {'s': gt_s, 'd': gt_d, 'w': gt_w}
self.gt_dict = gt_dict
def get_truncation(self):
truncation = self.cfg['trunc']
truncation *= self.cfg['sc_factor']
return truncation
def query_full_sdf(self, cnc_name, queries):
sdf = self.recon_sdf_dict[cnc_name].query(queries.reshape(-1, 3)) / self.get_truncation()
sdf = sdf.reshape(queries.shape[:-1])
return sdf
def query_visibility(self, cnc_name, queries):
visibility = self.visibility_grid[cnc_name].query(queries.reshape(-1, 3))
visibility = visibility.reshape(queries.shape[:-1])
return visibility
def backward_flow(self, cnc_name, pts, valid_samples, training=True):
if valid_samples is None:
valid_samples = torch.ones((len(pts)), dtype=torch.bool, device=pts.device)
inputs_flat = pts # torch.cat([pts, timesteps], dim=-1)
embedded_bwdflow = torch.zeros((inputs_flat.shape[0], self.models[f'{cnc_name}_embed_bwdflow_fn'].out_dim),
device=inputs_flat.device)
with torch.cuda.amp.autocast(enabled=self.cfg['amp']):
embedded_bwdflow[valid_samples] = self.models[f'{cnc_name}_embed_bwdflow_fn'](
inputs_flat[valid_samples]).to(embedded_bwdflow.dtype)
embedded_bwdflow = embedded_bwdflow.float()
canonical_pts = []
bwd_attn_hard, bwd_attn_soft = [], []
raw_cnc, raw_slot_attn, raw_slot_sdf = [], [], []
all_max_attn = []
all_total_occ = []
all_non_max_occ = []
empty_slot_mask = []
canonical_pts_cand = []
with torch.cuda.amp.autocast(enabled=self.cfg['amp']):
chunk = self.cfg['netchunk']
for i in range(0, embedded_bwdflow.shape[0], chunk):
out = self.models[f'{cnc_name}_deformation_model'].back_deform(pts[i: i + chunk], embedded_bwdflow[i: i + chunk])
xyz_cnc = out['xyz_cnc'] # [N, S, 3]
num_pts, num_slots = xyz_cnc.shape[:2]
xyz_cnc = xyz_cnc.reshape(-1, 3)
raw_cnc.append(xyz_cnc)
with torch.cuda.amp.autocast(enabled=self.cfg['amp']):
embedded_fwd_cnc = self.models[f'{cnc_name}_embed_fwdflow_fn'](xyz_cnc.float()).float()
fwd_attn_hard, fwd_attn_raw = self.models[f'{cnc_name}_deformation_model'].forw_attn(xyz_cnc, embedded_fwd_cnc, training=training) # [N * S, S]
def pick_slot_attn(fwd_attn):
fwd_attn = fwd_attn.reshape(num_pts, num_slots, num_slots)
fwd_attn = fwd_attn[
torch.arange(num_pts).to(fwd_attn.device).long().reshape(-1, 1).repeat(1, num_slots), # [N, S]
torch.arange(num_slots).to(fwd_attn.device).long().reshape(1, -1).repeat(num_pts, 1), # [N, S]
torch.arange(num_slots).to(fwd_attn.device).long().reshape(1, -1).repeat(num_pts, 1)] # [N, S]
return fwd_attn
fwd_attn_hard = pick_slot_attn(fwd_attn_hard)
fwd_attn_raw = pick_slot_attn(fwd_attn_raw)
# [2] candidates, [2, 2] <-- diagonal --> [S], fwd_attn_soft
# point 0: prob(point 0 belongs to slot 0) prob(point 0 belongs to slot 1)
# point 1: prob(point 1 belongs to slot 0) prob(point 1 belongs to slot 1)
raw_slot_attn.append(fwd_attn_raw) # for future analysis
sdf = self.query_full_sdf(cnc_name, xyz_cnc.float())
weights_from_sdf = self.get_occ_from_full_sdf(sdf)
weights_from_sdf = weights_from_sdf.reshape(num_pts, num_slots)
raw_slot_sdf.append(weights_from_sdf)
dots = fwd_attn_hard * weights_from_sdf # * weights_from_sdf # [N, S]
total_occ = torch.sum(dots, dim=-1)
non_max_occ = total_occ - torch.max(dots, dim=-1)[0]
dots = torch.cat([dots, torch.ones_like(dots[:, :1]) * self.cfg['empty_slot_weight']], dim=-1)
# let the stochasticity only happen in forward pass; just take their results (attn_hard), and run straight-through argmax
attn = dots / torch.sum(dots, dim=1, keepdim=True)
max_attn, index = attn.max(dim=1, keepdim=True) # [N]
y_hard = torch.zeros_like(attn, memory_format=torch.legacy_contiguous_format).scatter_(1, index, 1.0)
attn_hard = y_hard - attn.detach() + attn
attn_raw = attn
# make all indices other than the max index have a small value
all_max_attn.append(max_attn.reshape(-1))
all_total_occ.append(total_occ)
all_non_max_occ.append(non_max_occ)
xyz_base = torch.cat([xyz_cnc.reshape(num_pts, num_slots, 3), pts[i: i + chunk].reshape(-1, 1, 3)], dim=1)
chosen_cnc = (attn_hard.unsqueeze(-1) * xyz_base).sum(dim=1)
bwd_attn_hard.append(attn_hard[:, :-1])
bwd_attn_soft.append(attn_raw[:, :-1])
canonical_pts.append(chosen_cnc)
empty_slot_mask.append(attn_hard[:, -1])
canonical_pts_cand.append(xyz_cnc.reshape(num_pts, num_slots, 3))
canonical_pts = torch.cat(canonical_pts, dim=0).float()
if len(bwd_attn_hard) > 0 and bwd_attn_hard[0] is not None:
bwd_attn_hard = torch.cat(bwd_attn_hard, dim=0).float()
bwd_attn_soft = torch.cat(bwd_attn_soft, dim=0).float()
else:
bwd_attn_hard, bwd_attn_soft = None, None
if len(raw_cnc) > 0:
raw_cnc = torch.cat(raw_cnc, dim=0)
raw_slot_attn = torch.cat(raw_slot_attn, dim=0)
raw_slot_sdf = torch.cat(raw_slot_sdf, dim=0)
empty_slot_mask = torch.cat(empty_slot_mask, dim=0)
all_max_attn = torch.cat(all_max_attn, dim=0)
all_total_occ = torch.cat(all_total_occ, dim=0)
all_non_max_occ = torch.cat(all_non_max_occ, dim=0)
canonical_pts_cand = torch.cat(canonical_pts_cand, dim=0)
else:
raw_cnc, raw_slot_attn, raw_slot_sdf, empty_slot_mask, canonical_pts_cand = None, None, None, None, None
ret_dict = {'canonical_pts': canonical_pts, 'canonical_pts_cand': canonical_pts_cand,
'bwd_attn_hard': bwd_attn_hard, 'bwd_attn_soft': bwd_attn_soft,
'raw_cnc': raw_cnc, 'raw_slot_attn': raw_slot_attn, 'raw_slot_sdf': raw_slot_sdf,
'empty_slot_mask': empty_slot_mask, 'max_attn': all_max_attn, 'total_occ': all_total_occ, 'non_max_occ': all_non_max_occ}
return ret_dict
def forward_flow(self, cnc_name, pts, valid_samples, training=True):
if valid_samples is None:
valid_samples = torch.ones((len(pts)), dtype=torch.bool, device=pts.device)
inputs_flat = pts
embedded_fwdflow = torch.zeros((inputs_flat.shape[0], self.models[f'{cnc_name}_embed_fwdflow_fn'].out_dim),
device=inputs_flat.device)
with torch.cuda.amp.autocast(enabled=self.cfg['amp']):
embedded_fwdflow[valid_samples] = self.models[f'{cnc_name}_embed_fwdflow_fn'](
inputs_flat[valid_samples]).to(embedded_fwdflow.dtype)
embedded_fwdflow = embedded_fwdflow.float()
world_pts = []
world_pts_cand = []
fwd_attn_hard, fwd_attn_soft = [], []
fwd_rot, fwd_trans = [], []
fwd_rot_cand = []
with torch.cuda.amp.autocast(enabled=self.cfg['amp']):
chunk = self.cfg['netchunk']
for i in range(0, embedded_fwdflow.shape[0], chunk):
out = self.models[f'{cnc_name}_deformation_model'].forw_deform(pts[i: i + chunk],
embedded_fwdflow[i: i + chunk],
training=training, gt_attn=None)
world_pts.append(out['world_pts'])
world_pts_cand.append(out['world_pts_cand'])
fwd_attn_hard.append(out['attn_hard']) # [N, S]
fwd_attn_soft.append(out['attn_soft'])
fwd_rot.append(out['rotation'])
fwd_trans.append(out['translation'])
fwd_rot_cand.append(out['rotation_cand'])
world_pts = torch.cat(world_pts, dim=0).float()
world_pts_cand = torch.cat(world_pts_cand, dim=0).float()
if fwd_attn_hard[0] is not None:
fwd_attn_hard = torch.cat(fwd_attn_hard, dim=0).float()
fwd_attn_soft = torch.cat(fwd_attn_soft, dim=0).float()
fwd_rot = torch.cat(fwd_rot, dim=0).float()
fwd_rot_cand = torch.cat(fwd_rot_cand, dim=0).float()
fwd_trans = torch.cat(fwd_trans, dim=0).float()
else:
fwd_attn_hard, fwd_attn_soft = None, None
return {'world_pts': world_pts, 'world_pts_cand': world_pts_cand,
'fwd_attn_hard': fwd_attn_hard, 'fwd_attn_soft': fwd_attn_soft,
'fwd_rot': fwd_rot, 'fwd_trans': fwd_trans, 'fwd_rot_cand': fwd_rot_cand,
'cnc_features': embedded_fwdflow}
def project_to_pixel(self, cam_pts):
projection = torch.matmul(self.tensor_K[:2, :2],
(cam_pts[..., :2] /
torch.clip(-cam_pts[..., 2:3], min=1e-8)).transpose(0, 1)) + self.tensor_K[:2, 2:3]
projection = projection.transpose(0, 1)
return projection
def get_canonical_pts_from_world_pts(self, cnc_name, world_pts, timesteps, valid_samples):
ret = {}
first_mask = (timesteps == self.cnc_timesteps[cnc_name]).float()
if first_mask.mean() == 1:
canonical_pts = world_pts
else:
backward_flow = self.backward_flow(cnc_name, world_pts, valid_samples)
canonical_pts = backward_flow['canonical_pts']
for key in ['bwd_attn_soft', 'bwd_attn_hard', 'raw_cnc', 'raw_slot_attn', 'raw_slot_sdf', 'empty_slot_mask',
'max_attn', 'total_occ', 'non_max_occ', 'canonical_pts_cand']:
if key in backward_flow and backward_flow[key] is not None:
ret[key] = backward_flow[key]
canonical_pts = first_mask * world_pts + (1 - first_mask) * canonical_pts
ret['canonical_pts'] = canonical_pts
return ret
def get_world_pts_from_canonical_pts(self, cnc_name, canonical_pts, timesteps, valid_samples, training=True):
ret = {}
first_mask = (timesteps == self.cnc_timesteps[cnc_name]).float()
forward_flow = self.forward_flow(cnc_name, canonical_pts, valid_samples, training=training)
world_pts = forward_flow['world_pts']
world_pts_cand = forward_flow['world_pts_cand']
world_pts = first_mask * canonical_pts + (1 - first_mask) * world_pts
world_pts_cand = first_mask.unsqueeze(1) * canonical_pts.unsqueeze(1) + (1 - first_mask.unsqueeze(1)) * world_pts_cand
for key in ['fwd_attn_soft', 'fwd_attn_hard', 'cnc_features', 'fwd_rot', 'fwd_trans', 'fwd_rot_cand']:
ret[key] = forward_flow[key]
ret.update({'world_pts': world_pts, 'world_pts_cand': world_pts_cand})
return ret
def summarize_loss(self, loss_dict):
loss = torch.tensor(0.).cuda()
for loss_name, weight in self.loss_weights.items():
if weight > 0 and loss_name in loss_dict:
if loss_name in self.loss_schedule and self.loss_schedule[loss_name] > self.global_step:
continue
loss += loss_dict[loss_name] * weight
return loss
def train_epilogue(self, cnc_name, loss_dict):
loss = self.summarize_loss(loss_dict)
if (self.global_step + 1) % self.cfg['i_print'] == 0:
msg = f"Iter: {self.global_step + 1}, {cnc_name}, "
metrics = {
'loss': loss.item(),
}
metrics.update({loss_name: loss_dict[loss_name].item() for loss_name in loss_dict
if loss_name.startswith(cnc_name) or loss_name.startswith('self')})
for k in metrics.keys():
msg += f"{k}: {metrics[k]:.7f}, "
msg += "\n"
logging.info(msg)
if (self.global_step + 1) % self.cfg['i_wandb'] == 0 and self.use_wandb:
self.plot_loss({'total_loss': loss.item()}, self.global_step)
self.plot_loss({'lr': self.optimizer.state_dict()['param_groups'][0]['lr']},
self.global_step)
self.plot_loss(loss_dict, self.global_step)
if loss.requires_grad:
self.optimizer.zero_grad()
self.amp_scaler.scale(loss).backward()
self.amp_scaler.step(self.optimizer)
self.amp_scaler.update()
if (self.global_step + 1) % 10 == 0:
self.schedule_lr()
if (self.global_step + 1) % self.cfg['i_weights'] == 0 and cnc_name == 'last':
self.save_weights(output_path=os.path.join(self.save_dir, 'ckpt', f'model_{self.global_step + 1:07d}.pth'))
if (self.global_step + 1) % self.cfg['i_mesh'] == 0:
self.export_canonical(cnc_name, per_part=self.global_step >= self.freeze_recon_step)
if (self.global_step + 1) % self.cfg['i_img'] == 0 and self.global_step < self.freeze_recon_step:
ids = torch.unique(self.rays_dict[cnc_name][:, self.ray_frame_id_slice]).data.cpu().numpy().astype(int).tolist()
ids.sort()
ids = ids[::10][:10]
os.makedirs(pjoin(self.save_dir, 'step_img'), exist_ok=True)
dir = f"{self.save_dir}/step_img/step_{self.global_step + 1:07d}_{cnc_name}"
os.makedirs(dir, exist_ok=True)
for frame_idx in ids:
rgb, depth, ray_mask, gt_rgb, gt_depth, _ = self.render_images(cnc_name, frame_idx)
mask_vis = (rgb * 255 * 0.2 + ray_mask * 0.8).astype(np.uint8)
mask_vis = np.clip(mask_vis, 0, 255)
rgb = np.concatenate((rgb, gt_rgb), axis=1)
far = self.cfg['far'] * self.cfg['sc_factor']
gt_depth = np.clip(gt_depth, self.cfg['near'] * self.cfg['sc_factor'], far)
depth_vis = np.concatenate((to8b(depth / far), to8b(gt_depth / far)), axis=1)
depth_vis = np.tile(depth_vis[..., None], (1, 1, 3))
row = np.concatenate((to8b(rgb), depth_vis, mask_vis), axis=1)
img_name = self.frame_names[frame_idx].split('/')[-1].split('.')[-2]
imageio.imwrite(pjoin(dir, f'{img_name}.png'), row.astype(np.uint8))
def train_render_loop(self, cnc_name, batch):
target_s = batch[:, self.ray_rgb_slice] # Color (N,3)
target_d = batch[:, self.ray_depth_slice] # Normalized scale (N)
extras = self.render_rays(cnc_name=cnc_name, ray_batch=batch,
depth=target_d, lindisp=False, perturb=True)
loss_dict = {}
valid_samples = extras['valid_samples'] # (N_ray,N_samples)
N_rays, N_samples = valid_samples.shape
rgb = extras['rgb_map']
valid_samples = extras['valid_samples'] # (N_ray,N_samples)
z_vals = extras['z_vals'] # [N_rand, N_samples + N_importance]
sdf = extras['raw'][..., -1]
valid_rays = (valid_samples > 0).any(dim=-1).bool().reshape(N_rays) & (batch[:, self.ray_type_slice] == 0)
valid_sample_weights = valid_samples * valid_rays.view(-1, 1)
rgb_loss = (((rgb - target_s) ** 2 * valid_rays.view(-1, 1))).mean(dim=-1)
loss_dict['self_rgb'] = rgb_loss.mean()
truncation = self.get_truncation()
empty_loss, fs_loss, sdf_loss, front_mask, sdf_mask = get_sdf_loss(z_vals, target_d.reshape(-1, 1).expand(-1, N_samples),
sdf, truncation, self.cfg, return_mask=True,
rays_d=batch[:, self.ray_dir_slice])
for loss, loss_name in zip((fs_loss, empty_loss, sdf_loss), ('freespace', 'empty', 'sdf')):
loss = (loss * valid_sample_weights).mean(dim=-1)
loss_dict[f'self_{loss_name}'] = loss.mean()
return loss_dict
def forward_consistency(self, cnc_name, cnc_pts, cnc_viewdirs=None, valid_samples=None):
other_cnc_name = [name for name in self.cnc_timesteps if name != cnc_name][0]
target_timesteps = torch.ones_like(cnc_pts[..., :1]) * self.cnc_timesteps[other_cnc_name]
target_pts_dict = self.get_world_pts_from_canonical_pts(cnc_name, cnc_pts, target_timesteps, valid_samples.reshape(-1))
target_pts = target_pts_dict['world_pts']
target_pts_cand = target_pts_dict['world_pts_cand']
attn = target_pts_dict['fwd_attn_hard']
num_slots = target_pts_cand.shape[1]
target_rot = target_pts_dict['fwd_rot'] # [N, 3, 3]
target_rot_cand = target_pts_dict['fwd_rot_cand']
num_pts = len(target_pts)
target_pts_all = torch.cat([target_pts, target_pts_cand.reshape(-1, 3)], dim=0)
valid_samples_cand = valid_samples.unsqueeze(1).repeat(1, num_slots)
valid_samples_all = torch.cat([valid_samples, valid_samples_cand.reshape(-1)], dim=0)
if cnc_viewdirs is not None: # [N, 3]
target_viewdirs = torch.matmul(target_rot, cnc_viewdirs.unsqueeze(-1)).squeeze(-1) # [N, 3]
target_viewdirs_cand = torch.matmul(target_rot_cand.unsqueeze(0), cnc_viewdirs.unsqueeze(1).unsqueeze(-1)).squeeze(-1) # [N, P, 3]
target_viewdirs_all = torch.cat([target_viewdirs, target_viewdirs_cand.reshape(-1, 3)], dim=0)
sdf_only = False
else:
target_viewdirs_all = None
sdf_only = True
target_outputs_all, __ = self.query_object_field(other_cnc_name, target_pts_all, valid_samples_all, viewdirs=target_viewdirs_all,
sdf_only=sdf_only)
target_outputs, target_outputs_cand = target_outputs_all[:num_pts], target_outputs_all[num_pts:].reshape(-1, num_slots, target_outputs_all.shape[-1])
target_outputs_post = (attn.unsqueeze(-1) * target_outputs_cand).sum(dim=1)
target_outputs_post = target_outputs_post.reshape(target_outputs.shape)
target_outputs = target_outputs_post
target_full_sdf_cand = self.query_full_sdf(other_cnc_name, target_pts_cand.reshape(-1, 3).float())
target_full_sdf_cand = target_full_sdf_cand.reshape(-1, num_slots)
target_full_sdf_post = (attn * target_full_sdf_cand).sum(dim=1)
target_full_sdf_post = target_full_sdf_post.reshape(-1)
warped_sdf = target_full_sdf_post
target_vis_cand = self.query_visibility(other_cnc_name, target_pts_cand.reshape(-1, 3).float()).float()
warped_vis = (attn * target_vis_cand.reshape(-1, num_slots)).sum(dim=1).reshape(-1)
ret_dict = {'warped_sdf': warped_sdf, 'fwd_attn': target_pts_dict['fwd_attn_soft'], 'warped_vis': warped_vis}
if cnc_viewdirs is not None:
ret_dict['warped_rgb'] = target_outputs[..., :3]
return ret_dict
def backward_consistency(self, cnc_name, world_pts, valid_samples): # world_pts (N, 3)
world_pts = world_pts.detach()
other_cnc_name = [name for name in self.cnc_timesteps if name != cnc_name][0]
target_timesteps = torch.ones_like(world_pts[..., :1]) * self.cnc_timesteps[other_cnc_name]
canonical_pts_dict = self.get_canonical_pts_from_world_pts(cnc_name, world_pts, target_timesteps, valid_samples)
ret_dict = {f'bwd_{key}': canonical_pts_dict[key] for key in ['max_attn', 'non_max_occ', 'total_occ']}
ret_dict['bwd_attn'] = canonical_pts_dict['bwd_attn_soft']
return ret_dict
def compute_forward_losses(self, self_dict, forward_dict):
loss_dict = {}
weights_from_sdf = self_dict['weights']
#--------------Consistency------------
self_sdf = self_dict['sdf']
warped_sdf = forward_dict['warped_sdf']
self_vis = self_dict['visibility']
warped_vis = forward_dict['warped_vis']
vis_weight = self_vis * warped_vis
vis_discount = self.cfg.get('vis_discount', 1.)
vis_weight = (1 - vis_weight) + vis_weight * vis_discount
weights = weights_from_sdf * vis_weight # * self_vis * warped_vis
weights = weights / (weights_from_sdf.sum() + 1e-6)
cns_sdf = ((warped_sdf - self_sdf.detach()).abs() * weights).sum()
loss_dict[f'cns_sdf'] = cns_sdf
if 'rgb' in self_dict and 'warped_rgb' in forward_dict:
self_rgb = self_dict['rgb']
warped_rgb = forward_dict['warped_rgb']
cns_rgb = (((warped_rgb - self_rgb.detach()) ** 2).mean(dim=-1) * weights).sum()
loss_dict['cns_rgb'] = cns_rgb
return loss_dict
def compute_backward_losses(self, self_dict, backward_dict):
loss_dict = {}
total_occ = backward_dict['bwd_total_occ']
loss_dict['collision_occ'] = (torch.relu(total_occ - 1) ** 2).mean()
if 'occ' in self_dict:
occ = self_dict['occ']
vis_weight = self_dict['visibility'].float()
vis_discount = self.cfg.get('vis_discount', 1.)
vis_weight = (1 - vis_weight) + vis_weight * vis_discount
loss_dict['cns_occ'] = (((total_occ - occ) ** 2) * vis_weight).mean()