-
Notifications
You must be signed in to change notification settings - Fork 743
/
Copy pathconvert.py
executable file
·137 lines (103 loc) · 4.59 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python2.7
import caffe
from caffe.proto import caffe_pb2
import sys, os
import torch
import torch.nn as nn
import argparse, tempfile
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument('caffe_model', help='input model in hdf5 or caffemodel format')
parser.add_argument('prototxt_template',help='prototxt template')
parser.add_argument('flownet2_pytorch', help='path to flownet2-pytorch')
args = parser.parse_args()
args.rgb_max = 255
args.fp16 = False
args.grads = {}
# load models
sys.path.append(args.flownet2_pytorch)
import models
from utils.param_utils import *
width = 256
height = 256
keys = {'TARGET_WIDTH': width,
'TARGET_HEIGHT': height,
'ADAPTED_WIDTH':width,
'ADAPTED_HEIGHT':height,
'SCALE_WIDTH':1.,
'SCALE_HEIGHT':1.,}
template = '\n'.join(np.loadtxt(args.prototxt_template, dtype=str, delimiter='\n'))
for k in keys:
template = template.replace('$%s$'%(k),str(keys[k]))
prototxt = tempfile.NamedTemporaryFile(mode='w', delete=True)
prototxt.write(template)
prototxt.flush()
net = caffe.Net(prototxt.name, args.caffe_model, caffe.TEST)
weights = {}
biases = {}
for k, v in list(net.params.items()):
weights[k] = np.array(v[0].data).reshape(v[0].data.shape)
biases[k] = np.array(v[1].data).reshape(v[1].data.shape)
print((k, weights[k].shape, biases[k].shape))
if 'FlowNet2/' in args.caffe_model:
model = models.FlowNet2(args)
parse_flownetc(model.flownetc.modules(), weights, biases)
parse_flownets(model.flownets_1.modules(), weights, biases, param_prefix='net2_')
parse_flownets(model.flownets_2.modules(), weights, biases, param_prefix='net3_')
parse_flownetsd(model.flownets_d.modules(), weights, biases, param_prefix='netsd_')
parse_flownetfusion(model.flownetfusion.modules(), weights, biases, param_prefix='fuse_')
state = {'epoch': 0,
'state_dict': model.state_dict(),
'best_EPE': 1e10}
torch.save(state, os.path.join(args.flownet2_pytorch, 'FlowNet2_checkpoint.pth.tar'))
elif 'FlowNet2-C/' in args.caffe_model:
model = models.FlowNet2C(args)
parse_flownetc(model.modules(), weights, biases)
state = {'epoch': 0,
'state_dict': model.state_dict(),
'best_EPE': 1e10}
torch.save(state, os.path.join(args.flownet2_pytorch, 'FlowNet2-C_checkpoint.pth.tar'))
elif 'FlowNet2-CS/' in args.caffe_model:
model = models.FlowNet2CS(args)
parse_flownetc(model.flownetc.modules(), weights, biases)
parse_flownets(model.flownets_1.modules(), weights, biases, param_prefix='net2_')
state = {'epoch': 0,
'state_dict': model.state_dict(),
'best_EPE': 1e10}
torch.save(state, os.path.join(args.flownet2_pytorch, 'FlowNet2-CS_checkpoint.pth.tar'))
elif 'FlowNet2-CSS/' in args.caffe_model:
model = models.FlowNet2CSS(args)
parse_flownetc(model.flownetc.modules(), weights, biases)
parse_flownets(model.flownets_1.modules(), weights, biases, param_prefix='net2_')
parse_flownets(model.flownets_2.modules(), weights, biases, param_prefix='net3_')
state = {'epoch': 0,
'state_dict': model.state_dict(),
'best_EPE': 1e10}
torch.save(state, os.path.join(args.flownet2_pytorch, 'FlowNet2-CSS_checkpoint.pth.tar'))
elif 'FlowNet2-CSS-ft-sd/' in args.caffe_model:
model = models.FlowNet2CSS(args)
parse_flownetc(model.flownetc.modules(), weights, biases)
parse_flownets(model.flownets_1.modules(), weights, biases, param_prefix='net2_')
parse_flownets(model.flownets_2.modules(), weights, biases, param_prefix='net3_')
state = {'epoch': 0,
'state_dict': model.state_dict(),
'best_EPE': 1e10}
torch.save(state, os.path.join(args.flownet2_pytorch, 'FlowNet2-CSS-ft-sd_checkpoint.pth.tar'))
elif 'FlowNet2-S/' in args.caffe_model:
model = models.FlowNet2S(args)
parse_flownetsonly(model.modules(), weights, biases, param_prefix='')
state = {'epoch': 0,
'state_dict': model.state_dict(),
'best_EPE': 1e10}
torch.save(state, os.path.join(args.flownet2_pytorch, 'FlowNet2-S_checkpoint.pth.tar'))
elif 'FlowNet2-SD/' in args.caffe_model:
model = models.FlowNet2SD(args)
parse_flownetsd(model.modules(), weights, biases, param_prefix='')
state = {'epoch': 0,
'state_dict': model.state_dict(),
'best_EPE': 1e10}
torch.save(state, os.path.join(args.flownet2_pytorch, 'FlowNet2-SD_checkpoint.pth.tar'))
else:
print(('model type cound not be determined from input caffe model %s'%(args.caffe_model)))
quit()
print(("done converting ", args.caffe_model))