forked from mit-nlp/MITIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainSeparateDocCategorizerExample.java
77 lines (67 loc) · 3.73 KB
/
TrainSeparateDocCategorizerExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import edu.mit.ll.mitie.*;
public class TrainSeparateDocCategorizerExample {
public static void main(String[] args) {
// train models using the separation API
StringVector sentence = new StringVector();
sentence.add("I");
sentence.add("am");
sentence.add("so");
sentence.add("happy");
sentence.add("and");
sentence.add("exciting");
sentence.add("to");
sentence.add("make");
sentence.add("this");
StringVector sentence2 = new StringVector();
sentence2.add("What");
sentence2.add("a");
sentence2.add("black");
sentence2.add("and");
sentence2.add("bad");
sentence2.add("day");
// Now that we have some annotated example sentences we can create the object that does
// the actual training, the rainer. The constructor for this object takes a string
// that should contain the file name for a saved mitie::total_word_feature_extractor C++ object.
// The total_word_feature_extractor is MITIE's primary method for analyzing words and
// is created by the tool in the MITIE/tools/wordrep folder. The wordrep tool analyzes
// a large document corpus, learns important word statistics, and then outputs a
// total_word_feature_extractor that is knowledgeable about a particular language (e.g.
// English). MITIE comes with a total_word_feature_extractor for English so that is
// what we use here. But if you need to make your own you do so using a command line
// statement like:
// wordrep -e a_folder_containing_only_text_files
// and wordrep will create a total_word_feature_extractor.dat based on the supplied
// text files. Note that wordrep can take a long time to run or require a lot of RAM
// if a large text dataset is given. So use a powerful machine and be patient.
TextCategorizerTrainer trainer = new TextCategorizerTrainer(
"../../MITIE-models/english/total_word_feature_extractor.dat");
// Don't forget to add the training data. Here we have only two examples, but for real
// uses you need to have thousands.
trainer.add(sentence, "positive");
trainer.add(sentence2, "negative");
// The trainer can take advantage of a multi-core CPU. So set the number of threads
// equal to the number of processing cores for maximum training speed.
trainer.setThreadNum(4);
// This function does the work of training. Note that it can take a long time to run
// when using larger training datasets. So be patient.
trainer.trainSeparateModels("pure_text_categorizer_model.dat");
// restore the model using the pure model and extractor
TextCategorizer categorizer = new TextCategorizer(
"pure_text_categorizer_model.dat",
"../../MITIE-models/english/total_word_feature_extractor.dat"
);
// Finally, lets test out our new model on an example sentence
StringVector testSentence = new StringVector();
testSentence.add("It");
testSentence.add("is");
testSentence.add("really");
testSentence.add("exciting");
System.out.println("Tags output by this text categorizer model are: ");
StringVector possibleTags = categorizer.getPossibleNerTags();
for (int i = 0; i < possibleTags.size(); ++i)
System.out.println(possibleTags.get(i));
// Now ask MITIE to detect the type of the text we just loaded.
SDPair result = categorizer.categorizeDoc(testSentence);
System.out.println("The type of this text is: " + result.getFirst() + ", with confidence score as " + result.getSecond());
}
}