-
-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathpreprocessing.mqh
603 lines (501 loc) · 21.5 KB
/
preprocessing.mqh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
//+------------------------------------------------------------------+
//| preprocessing.mqh |
//| Copyright 2022, Fxalgebra.com |
//| https://www.mql5.com/en/users/omegajoctan |
//+------------------------------------------------------------------+
#property copyright "Copyright 2022, Fxalgebra.com"
#property link "https://www.mql5.com/en/users/omegajoctan"
//+------------------------------------------------------------------+
//| LABEL ENCODE CLASS FOR PREPROCESSING INFORMATION |
//+------------------------------------------------------------------+
struct CLabelEncoder
{
private:
int dummy;
void Unique(const string &Array[], string &classes_arr[]) //From matrix<T> utils
{
string temp_arr[];
ArrayResize(classes_arr,1);
ArrayCopy(temp_arr,Array);
classes_arr[0] = Array[0];
for(int i=0, count =1; i<ArraySize(Array); i++) //counting the different neighbors
{
for(int j=0; j<ArraySize(Array); j++)
{
if(Array[i] == temp_arr[j] && temp_arr[j] != "-nan")
{
bool count_ready = false;
for(int n=0; n<ArraySize(classes_arr); n++)
if(Array[i] == classes_arr[n])
count_ready = true;
if(!count_ready)
{
count++;
ArrayResize(classes_arr,count);
classes_arr[count-1] = Array[i];
temp_arr[j] = "-nan"; //modify so that it can no more be counted
}
else
break;
//Print("t vectors vector<T> ",v);
}
else
continue;
}
}
}
//--- Sort the array based on the bubble algorithm
bool BubbleSortStrings(string &arr[])
{
int arraySize = ArraySize(arr);
if (arraySize == 0)
{
Print(__FUNCTION__," Failed to Sort | ArraySize = 0");
return false;
}
for(int i = 0; i < arraySize - 1; i++)
{
for(int j = 0; j < arraySize - i - 1; j++)
{
if(StringCompare(arr[j], arr[j + 1], false) > 0)
{
// Swap arr[j] and arr[j + 1]
string temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
return true;
}
public:
vector encode(string &Arr[])
{
string unique_values[];
Unique(Arr, unique_values);
vector ret(ArraySize(Arr));
if (!BubbleSortStrings(unique_values))
return ret;
for (int i=0; i<ArraySize(unique_values); i++)
for (int j=0; j<ArraySize(Arr); j++)
if (unique_values[i] == Arr[j])
ret[j] = i+1;
return ret;
}
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
#include "MatrixExtend.mqh";
//+------------------------------------------------------------------+
//| |
//| |
//| Standardization Scaler |
//| |
//| |
//+------------------------------------------------------------------+
class StandardizationScaler
{
protected:
vector mean, std;
bool loaded_scaler;
public:
StandardizationScaler(void);
StandardizationScaler(const double &mean[], const double &std[]); //For Loading the pre-fitted scaler
~StandardizationScaler(void);
virtual matrix fit_transform(const matrix &X);
virtual matrix transform(const matrix &X);
virtual vector transform(const vector &X);
virtual bool save(string save_dir);
virtual matrix inverse_transform(const matrix &X_scaled);
virtual vector inverse_transform(const vector &X_scaled);
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
StandardizationScaler::StandardizationScaler(void)
{
loaded_scaler = false;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
StandardizationScaler::StandardizationScaler(const double &mean_[],const double &std_[])
{
this.mean = MatrixExtend::ArrayToVector(mean_);
this.std = MatrixExtend::ArrayToVector(std_);
loaded_scaler = true;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
StandardizationScaler::~StandardizationScaler(void)
{
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
matrix StandardizationScaler::fit_transform(const matrix &X)
{
if (loaded_scaler)
{
printf("% This is a loaded scaler | no need to fit to the new data, call another instance of a class",__FUNCTION__);
return X;
}
this.mean.Resize(X.Cols());
this.std.Resize(X.Cols());
for (ulong i=0; i<X.Cols(); i++)
{
this.mean[i] = X.Col(i).Mean();
this.std[i] = X.Col(i).Std();
}
//---
return this.transform(X);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
vector StandardizationScaler::inverse_transform(const vector &X_scaled)
{
vector X(X_scaled.Size());
if (this.mean.Size() == 0 || this.std.Size() == 0) {
printf("%s Call the fit_transform function first to fit the scaler or\n Load the pre-fitted scaler before attempting to transform the new data", __FUNCTION__);
return X;
}
if (X_scaled.Size() != this.mean.Size()) {
printf("%s Dimension mismatch between trained data sized=(%d) and the new data sized=(%d)", __FUNCTION__, this.mean.Size(), X_scaled.Size());
return X;
}
for (ulong i = 0; i < X.Size(); i++) {
X[i] = X_scaled[i] * (this.std[i] + 1e-10) + this.mean[i];
}
return X;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
matrix StandardizationScaler::transform(const matrix &X)
{
matrix X_norm = X;
for (ulong i=0; i<X.Rows(); i++)
X_norm.Row(this.transform(X.Row(i)), i);
return X_norm;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
matrix StandardizationScaler::inverse_transform(const matrix &X_scaled)
{
matrix X = X_scaled;
for (ulong i=0; i<X.Rows(); i++)
X.Row(this.inverse_transform(X_scaled.Row(i)), i);
return X;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
vector StandardizationScaler::transform(const vector &X)
{
vector v(X.Size());
if (this.mean.Size()==0 || this.std.Size()==0)
{
printf("%s Call the fit_transform function first to fit the scaler or\n Load the pre-fitted scaler before attempting to transform the new data",__FUNCTION__);
return v;
}
if (X.Size() != this.mean.Size())
{
printf("%s Dimension mismatch between trained data sized=(%d) and the new data sized=(%d)",__FUNCTION__,this.mean.Size(),X.Size());
return v;
}
for (ulong i=0; i<v.Size(); i++)
v[i] = (X[i] - this.mean[i]) / (this.std[i] + 1e-10);
return v;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
bool StandardizationScaler::save(string save_dir)
{
//---save mean
if (!MatrixExtend::write_bin(this.mean, save_dir+"\\mean.bin"))
{
printf("%s Failed Save the mean values of the Scaler",__FUNCTION__);
return false;
}
//--- save std
if (!MatrixExtend::write_bin(this.std, save_dir+"\\std.bin"))
{
printf("%s Failed Save the Standard deviation values of the Scaler",__FUNCTION__);
return false;
}
return true;
}
//+------------------------------------------------------------------+
//| |
//| |
//| Min-Max Scaler |
//| |
//| |
//+------------------------------------------------------------------+
class MinMaxScaler
{
protected:
vector min, max;
bool loaded_scaler;
public:
MinMaxScaler(void);
MinMaxScaler(const double &min_[], const double &max_[]); //For Loading the pre-fitted scaler
~MinMaxScaler(void);
virtual matrix fit_transform(const matrix &X);
virtual matrix transform(const matrix &X);
virtual vector transform(const vector &X);
virtual bool save(string dir);
virtual matrix inverse_transform(const matrix &X_scaled);
virtual vector inverse_transform(const vector &X_scaled);
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
MinMaxScaler::MinMaxScaler(void)
{
loaded_scaler =false;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
MinMaxScaler::~MinMaxScaler(void)
{
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
MinMaxScaler::MinMaxScaler(const double &min_[],const double &max_[])
{
this.min = MatrixExtend::ArrayToVector(min_);
this.max = MatrixExtend::ArrayToVector(max_);
loaded_scaler = true;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
matrix MinMaxScaler::fit_transform(const matrix &X)
{
if (loaded_scaler)
{
printf("% This is a loaded scaler | no need to fit to the new data, call another instance of a class",__FUNCTION__);
return X;
}
//---
this.min.Resize(X.Cols());
this.max.Resize(X.Cols());
for (ulong i=0; i<X.Cols(); i++)
{
this.min[i] = X.Col(i).Min();
this.max[i] = X.Col(i).Max();
}
if (MQLInfoInteger(MQL_DEBUG))
Print("Min: ",this.min,"\nMax: ",this.max);
//---
return this.transform(X);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
vector MinMaxScaler::transform(const vector &X)
{
vector v(X.Size());
if (this.min.Size()==0 || this.max.Size()==0)
{
printf("%s Call the fit_transform function fist to fit the scaler or\n the load function to load the pre-fitted scalerbefore attempting to transform the new data",__FUNCTION__);
return v;
}
if (X.Size() != this.min.Size())
{
printf("%s X of size [%d] doesn't match the same number of features in a given X matrix on the fit_transform function call",__FUNCTION__,this.min.Size());
return v;
}
for (ulong i=0; i<X.Size(); i++)
v[i] = (X[i] - this.min[i]) / ((this.max[i] - this.min[i]) + 1e-10);
return v;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
matrix MinMaxScaler::transform(const matrix &X)
{
matrix X_norm = X;
for (ulong i=0; i<X.Rows(); i++)
X_norm.Row(this.transform(X.Row(i)), i);
return X_norm;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
matrix MinMaxScaler::inverse_transform(const matrix &X_scaled)
{
matrix X = X_scaled;
for (ulong i=0; i<X.Rows(); i++)
X.Row(this.inverse_transform(X_scaled.Row(i)), i);
return X;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
vector MinMaxScaler::inverse_transform(const vector &X_scaled)
{
vector v(X_scaled.Size());
if (this.min.Size()==0 || this.max.Size()==0)
{
printf("%s Call the fit_transform function fist to fit the scaler or\n the load function to load the pre-fitted scalerbefore attempting to transform the new data",__FUNCTION__);
return v;
}
if (X_scaled.Size() != this.min.Size())
{
printf("%s X of size [%d] doesn't match the same number of features in a given X matrix on the fit_transform function call",__FUNCTION__,this.min.Size());
return v;
}
//--- Perform inverse transformation
for (ulong i = 0; i < X_scaled.Size(); ++i)
v[i] = X_scaled[i] * (max[i] - min[i]) + min[i];
return v;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
bool MinMaxScaler::save(string save_dir)
{
//---save min
if (!MatrixExtend::write_bin(this.min, save_dir+"\\min.bin"))
{
printf("%s Failed to save the Min values for the scaler",__FUNCTION__);
return false;
}
//--- save max
if (!MatrixExtend::write_bin(this.max, save_dir+"\\max.bin"))
{
printf("%s Failed to save the Max values for the scaler",__FUNCTION__);
return false;
}
return true;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
//+------------------------------------------------------------------+
//| |
//| |
//| Mean Normalization Scaler |
//| |
//| |
//+------------------------------------------------------------------+
class RobustScaler
{
protected:
vector median, quantile;
bool loaded_scaler;
public:
RobustScaler(void);
RobustScaler(const double &median_[], const double &quantile_[]);
~RobustScaler(void);
virtual matrix fit_transform(const matrix &X);
virtual matrix transform(const matrix &X);
virtual vector transform(const vector &X);
virtual bool save(string save_dir);
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
RobustScaler::RobustScaler(void)
{
loaded_scaler = false;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
RobustScaler::RobustScaler(const double &median_[],const double &quantile_[])
{
this.median = MatrixExtend::ArrayToVector(median_);
this.quantile = MatrixExtend::ArrayToVector(quantile_);
loaded_scaler = true;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
RobustScaler::~RobustScaler(void)
{
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
matrix RobustScaler::fit_transform(const matrix &X)
{
if (loaded_scaler)
{
printf("% This is a loaded scaler | no need to fit to the new data, call another instance of a class",__FUNCTION__);
return X;
}
//---
this.median.Resize(X.Cols());
this.quantile.Resize(X.Cols());
for (ulong i=0; i<X.Cols(); i++)
{
this.median[i] = X.Col(i).Median();
this.quantile[i] = MathAbs(X.Col(i) - this.median[i]).Median() * 1.4826; // 1.4826 is a constant for consistency;
}
if (MQLInfoInteger(MQL_DEBUG))
Print("Median: ",this.median,"\nQuantile: ",this.quantile);
//---
return this.transform(X);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
matrix RobustScaler::transform(const matrix &X)
{
matrix X_norm = X;
for (ulong i=0; i<X.Rows(); i++)
X_norm.Row(this.transform(X.Row(i)), i);
return X_norm;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
vector RobustScaler::transform(const vector &X)
{
vector v(X.Size());
if (this.median.Size()==0)
{
printf("%s Call the fit_transform function fist to fit the scaler or\n the load function to load the pre-fitted scalerbefore attempting to transform the new data",__FUNCTION__);
return v;
}
if (X.Size() != this.median.Size())
{
printf("%s X of size [%d] doesn't match the same number of features in a given X matrix on the fit_transform function call",__FUNCTION__,this.median.Size());
return v;
}
for (ulong i=0; i<X.Size(); i++)
v[i] = (X[i] - this.median[i]) / (quantile[i] + 1e-10);
return v;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
bool RobustScaler::save(string save_dir)
{
//--- save median
if (!MatrixExtend::write_bin(this.median, save_dir+"\\median.bin"))
{
printf("%s Failed to save the Median values for the scaler",__FUNCTION__);
return false;
}
//--- save quantile
if (!MatrixExtend::write_bin(this.quantile, save_dir+"\\quantile.bin"))
{
printf("%s Failed to save the Quantile values for the scaler",__FUNCTION__);
return false;
}
return true;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+