forked from open-mmlab/mmdetection3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfcos3d_r101-caffe-dcn_fpn_head-gn_8xb2-1x_nus-mono3d.py
70 lines (65 loc) · 2.02 KB
/
fcos3d_r101-caffe-dcn_fpn_head-gn_8xb2-1x_nus-mono3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
_base_ = [
'../_base_/datasets/nus-mono3d.py', '../_base_/models/fcos3d.py',
'../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
data_preprocessor=dict(
type='Det3DDataPreprocessor',
mean=[103.530, 116.280, 123.675],
std=[1.0, 1.0, 1.0],
bgr_to_rgb=False,
pad_size_divisor=32),
backbone=dict(
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, False, True, True)))
backend_args = None
train_pipeline = [
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(
type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=True,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
dict(type='mmdet.Resize', scale=(1600, 900), keep_ratio=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='Pack3DDetInputs',
keys=[
'img', 'gt_bboxes', 'gt_bboxes_labels', 'attr_labels',
'gt_bboxes_3d', 'gt_labels_3d', 'centers_2d', 'depths'
]),
]
test_pipeline = [
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(type='mmdet.Resize', scale_factor=1.0),
dict(type='Pack3DDetInputs', keys=['img'])
]
train_dataloader = dict(
batch_size=2, num_workers=2, dataset=dict(pipeline=train_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
# optimizer
optim_wrapper = dict(
optimizer=dict(lr=0.002),
paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.),
clip_grad=dict(max_norm=35, norm_type=2))
# learning rate
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0 / 3,
by_epoch=False,
begin=0,
end=500),
dict(
type='MultiStepLR',
begin=0,
end=12,
by_epoch=True,
milestones=[8, 11],
gamma=0.1)
]