-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
132 lines (116 loc) · 4.68 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""module that has some simple models for testing
"""
import numpy as np
import constants as ct
import particle as pt
import ska as sk
import astro as ap
import echo as ec
import routines as rt
def snr_routine(ma, ga,
sn_remnant,
gamma=None,
nu_pivot=None,
lightcurve_params=None,
snu_echo_kwargs=None,
data=None,
output_all=False,
beta=ct._MW_spectral_beta_,
verbose=0):
"""
Computes the full echo routine for any axion parameters (ma, ga) and a particular Supernova Remnant object.
Parameters
----------
ma : axion mass [eV]
ga : axion-photon coupling [GeV^-1]
sn_remnant: the SNR object
gamma : SNR adiabatic index (default: None)
nu_pivot : pivot frequency [GHz] (default: None)
lightcurve_params : parameters required to describe the SNR lightcurve. In addition to the optional 'use_free_expansion' (default: True), it needs 4 or 5 out of the following 5: ['t_peak', 'L_peak', 't_trans', 't_age', 'L_today']. If sn_remnant.get_flux_density()/sn_remnant.snu_at_1GHz is available then passing only 3 parameters is allowed.
snu_echo_kwargs : keyword args that go into snu_echo computation (default: None)
data : experiment and detection data dictionary (default: None)
output_all : False
beta: the index for the Milky (default: -2.55)
"""
# Preparing source_input dictionary from SNR object
# a) coordinates
l, b = sn_remnant.get_coord() # [degree]
# b) extracting source's size (solid angle)
size = sn_remnant.get_size() # [sr]
if size == None:
force_size = True # there is no known size: compute it
if verbose > 1:
print("SNR size=None, will be forced to compute it from first principles.")
else:
force_size = False # there is a known size: do not compute it
if verbose > 1:
print("SNR size=%.1e. Value will be respected." % size)
# c) distance
try:
distance = sn_remnant.get_distance()
except:
return -1 # NECESSARY!
# d) spectral index
alpha = sn_remnant.get_spectral_index()
if alpha is None:
return -1 # NECESSARY!
# e) adiabatic index
if gamma is None:
gamma = ap.gamma_from_alpha(alpha)
# f) nu_pivot
if nu_pivot is None:
nu_pivot = 1. # [GHz]
# g) lightcurve_params:
if not 'use_free_expansion' in lightcurve_params.keys():
lightcurve_params['use_free_expansion'] = True
if len(lightcurve_params) > 5:
raise ValueError(
"'lightcurve_params' has too many parameters. Please refer to astro.pars_required.")
elif len(lightcurve_params) == 5:
pass
elif len(lightcurve_params) == 4:
if 'L_today' in lightcurve_params.keys():
raise KeyError(
"'lightcurve_params' has 3 parameters (+ 'use_free_expansion'), and 'L_today' is one of them. Either pass 4 (+1) parameters, or pass 3 (+!) without 'L_today', which will be read directly from 'sn_remnant'.")
try:
S0 = sn_remnant.get_flux_density() # [Jy] at 1 GHz
L_today = sn_remnant.get_luminosity() # [erg * s^-1 * Hz^-1]
lightcurve_params['L_today'] = L_today
except:
raise ValueError(
"sn_remnant.get_flux_density() does not work: i.e. the 'sn_remnant' does not have a known flux density. Please fix this, or use a different suite of 'lightcurve_params'.")
else:
raise ValueError(
"'lightcurve_params' is not in the correct form. Please refer to astro.pars_required.")
# source_input
source_input = {
'model': 'eff',
'name': sn_remnant.name,
'longitude': l,
'latitude': b,
'distance': distance,
'size': size,
'alpha': alpha,
'nu_pivot': nu_pivot,
'gamma': gamma
}
source_input.update(lightcurve_params)
# compute signal
ga_ref = 1.e-10 # [GeV]
output = {}
new_output = rt.full_routine(ma, ga, ga_ref, output,
source_input=source_input,
data=data,
Snu_echo_kwargs=snu_echo_kwargs,
beta=beta)
signal_power = new_output['signal_power']
noise_power = new_output['noise_power']
signal_noise_ratio = new_output['S/N_power']
if verbose > 0:
print('signal power:{}'.format(signal_power))
print('noise power:{}'.format(noise_power))
print('s/n: {}\n'.format(signal_noise_ratio))
if output_all:
return signal_noise_ratio, new_output
else:
return signal_noise_ratio