This repository has been archived by the owner on May 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsentiment_rnn.py
276 lines (212 loc) · 9.46 KB
/
sentiment_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#!/usr/bin/python
import argparse
import logging
import numpy as np
import os
import sys
import tensorflow as tf
from datetime import datetime
from embedding import glove, look_up_word, PAD_TOKEN
# Global constants
LEARNING_RATE = 0.001
TRAIN_BATCH_SIZE = 16
EPOCHS = 300
MAX_LENGTH = 200
VALIDATION_SPLIT = 0.2
EMBEDDING_DIMS = glove.shape[1]
RNN_UNITS = 64
MIDDLE_DENSE_UNITS = RNN_UNITS
DATETIME_STRING = '{:%b-%d-%Y_%H%M%S}'.format(datetime.now())
# Sample usage:
# 1) train a model from scratch
# python sentiment_rnn.py train --name experiment --base-dir /my/base/dir
#
# 2) continue training a model
# python sentiment_rnn.py train --base-dir /my/base/dir/experiment --continue-epoch 2
#
# 3) runtimei from an epoch
# python sentiment_rnn.py runtime --base-dir /my/base/dir/experiment --continue-epoch 2
# Parse cmd args
parser = argparse.ArgumentParser()
parser.add_argument('mode', help='`train` or `runtime`')
parser.add_argument('--name', default=None,
help='`Name of the job used as a prefix for identification')
parser.add_argument('--base-dir', default=os.path.dirname(__file__),
help='Where the model dir will be saved')
parser.add_argument('--continue-epoch', type=int, default=0,
help='If specified will start training model from this one')
parser.add_argument('--cache-dir', default=os.path.join(os.path.dirname(__file__), '.cache'),
help='Where the dataset and other intermediate files will be saved')
args = parser.parse_args()
start_epoch = args.continue_epoch
cache_dir = args.cache_dir
checkpoint_dir = args.base_dir
if args.mode == 'runtime':
runtime = True
logfile = 'runtime_%s.log' % DATETIME_STRING
elif args.mode == 'train':
runtime = False
logfile = 'train_%s.log' % DATETIME_STRING
if args.name or start_epoch == 0:
name = 'experiment_' + DATETIME_STRING if not args.name else args.name
checkpoint_dir = os.path.join(checkpoint_dir, name)
else:
raise RuntimeError('`%s` mode isn''t recognized!' % args.mode)
logfile = os.path.join(checkpoint_dir, logfile)
if not runtime and start_epoch == 0 and os.path.exists(checkpoint_dir):
raise RuntimeError(
'Model path exists (%s). Delete first or change the name to train from scratch.' % checkpoint_dir)
for d in [cache_dir, checkpoint_dir]:
if not os.path.exists(d):
os.mkdir(d)
logging.basicConfig(
level=logging.INFO,
handlers=[
logging.FileHandler(logfile),
logging.StreamHandler()
]
)
logging.info('Downloading the polarity dataset...')
RELATIVE_POLARITY_DATASET_SUBDIR = os.path.join('datasets', 'review_polarity')
DATA_DIR = os.path.join(
cache_dir, RELATIVE_POLARITY_DATASET_SUBDIR, 'txt_sentoken')
do_extract = not os.path.exists(DATA_DIR)
# Data retrieved from https://www.cs.cornell.edu/people/pabo/movie-review-data/
# Pang, B., & Lee, L. (2004, July). A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of the 42nd annual meeting on Association for Computational Linguistics (p. 271). Association for Computational Linguistics.
dataset = tf.keras.utils.get_file(
fname='review_polarity.tar.gz',
cache_dir=cache_dir,
cache_subdir=RELATIVE_POLARITY_DATASET_SUBDIR,
origin='https://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz',
extract=do_extract)
logging.info('Loading and preprocessing text data...')
train_file_sents, val_file_sents = [], []
for d, sent in [(os.path.join(DATA_DIR, sd), score) for sd, score in [('pos', 1.), ('neg', 0.)]]:
files = os.listdir(d)
split_index = int((1-VALIDATION_SPLIT)*len(files))
train_file_sents += [(os.path.join(d, f), sent)
for f in files[:split_index]]
val_file_sents += [(os.path.join(d, f), sent)
for f in files[split_index:]]
def make_token_generator_for_files(src_file_sents):
def generator():
for f, sent in src_file_sents:
# Put your custom tokenizing code here
# Use nltk.word_tokenize, but in this case the dataset is processed so we don't need to
# import nltk
# nltk.download('punkt')
line_token_ids = [look_up_word(t.lower()) for ts in [line.split() for line in tf.gfile.GFile(
f, 'r').readlines()] for t in ts][:MAX_LENGTH]
token_ids_length = len(line_token_ids)
# Could also do `padded_batch` here
line_token_ids += [PAD_TOKEN] * (MAX_LENGTH - token_ids_length)
yield (line_token_ids, token_ids_length, sent)
return generator
logging.info('Making datasets...')
# We use a dynamic batch size so we can evaluate a whole dataset
batch_size = tf.placeholder(tf.int64)
train_set_size, val_set_size = len(train_file_sents), len(val_file_sents)
train_dataset = tf.data.Dataset.from_generator(
make_token_generator_for_files(train_file_sents), (tf.int32, tf.int32, tf.float32), (tf.TensorShape([None]), tf.TensorShape(None), tf.TensorShape(None)))\
.shuffle(train_set_size)\
.batch(batch_size)
val_dataset = tf.data.Dataset.from_generator(
make_token_generator_for_files(val_file_sents), (tf.int32, tf.int32, tf.float32), (tf.TensorShape([None]), tf.TensorShape(None), tf.TensorShape(None)))\
.shuffle(val_set_size)\
.batch(batch_size)
iterator = tf.data.Iterator.from_structure(
train_dataset.output_types, train_dataset.output_shapes)
logging.info('Creating TensorFlow ops...')
# Create the dataset initialization operations
train_init_op = iterator.make_initializer(train_dataset)
val_init_op = iterator.make_initializer(val_dataset)
batch_token_ids, batch_seq_lens, batch_labels = iterator.get_next()
embedding_table = tf.get_variable("embedding_table", initializer=glove)
batch_embedding = tf.nn.embedding_lookup(embedding_table, batch_token_ids)
##### Actual model definition ###########
fwd = tf.contrib.rnn.GRUCell(num_units=RNN_UNITS)
bwd = tf.contrib.rnn.GRUCell(num_units=RNN_UNITS)
_, final_rnn_state = tf.nn.bidirectional_dynamic_rnn(
fwd,
bwd,
batch_embedding,
sequence_length=batch_seq_lens,
dtype=tf.float32
)
# Final state of GRU is the same as final output. No need to slice outputs with tf.gather here.
fwd_state, bwd_state = final_rnn_state
last_rnn_state = tf.concat([fwd_state, bwd_state], axis=1)
sentiment_logits = tf.layers.dense(
last_rnn_state,
1,
use_bias=True
)
# Training and Evaluation code follows
loss_op = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=sentiment_logits, labels=batch_labels))
accuracy = tf.metrics.accuracy(
batch_labels,
tf.greater(sentiment_logits, tf.zeros(tf.shape(sentiment_logits)))
)
optimizer = tf.train.AdamOptimizer(LEARNING_RATE)
trainer = optimizer.minimize(loss_op)
saver = tf.train.Saver()
# A runtime method
def interact(sess):
logging.info('='*40)
logging.info('Interactive runtime')
logging.info('='*40)
inp = input('Enter a phrase or `q` to quit: ')
while inp and inp != 'q':
logging.info('Query: %s' % inp)
line_token_ids = [look_up_word(t.lower())
for t in inp.split()][:MAX_LENGTH]
token_ids_length = len(line_token_ids)
line_token_ids += [PAD_TOKEN] * (MAX_LENGTH - token_ids_length)
pred = sess.run([sentiment_logits], feed_dict={
batch_token_ids: [line_token_ids], batch_seq_lens: [token_ids_length], batch_size: 1})
if pred[0] >= 0:
logging.info('Result: POSTIVE (+)')
else:
logging.info('Result: NEGATIVE (-)')
inp = input('Enter a phrase or `q` to quit: ')
with tf.Session() as session:
if runtime or start_epoch > 0:
logging.info('Restoring model from %s' % checkpoint_dir)
saver.restore(session, os.path.join(
checkpoint_dir, 'model-{0}'.format(start_epoch)))
else:
logging.info('Training model from scratch in %s' % checkpoint_dir)
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
session.run(tf.tables_initializer())
if runtime:
interact(session)
sys.exit(0)
for i in range(start_epoch + 1, start_epoch + EPOCHS + 1, 1):
session.run(train_init_op, feed_dict={batch_size: TRAIN_BATCH_SIZE})
logging.info('='*50)
logging.info('EPOCH %d ' % i + '-'*40)
# Iterate over batches
batchn = 0
while True:
try:
loss, acc, bs, _ = session.run(
[loss_op, accuracy, batch_size, trainer], feed_dict={batch_size: TRAIN_BATCH_SIZE})
# Print stats at the start and end of the batch for debugging
if batchn == 0 or batchn == ((train_set_size // bs) - 1):
logging.info('ep={}, batch={}, loss={:.5f}, acc={:.4f}'.format(
i, batchn, loss, acc[0]))
batchn += 1
except tf.errors.OutOfRangeError:
break
session.run(train_init_op, feed_dict={batch_size: train_set_size})
loss, acc = session.run([loss_op, accuracy])
logging.info('-'*50)
logging.info(
'TRAIN RESULTS: loss={:.5f}, acc={:.4f}'.format(loss, acc[0]))
session.run(val_init_op, feed_dict={batch_size: val_set_size})
loss, acc = session.run([loss_op, accuracy])
logging.info(
'VALIDATION RESULTS: loss={:.5f}, acc={:.4f}'.format(loss, acc[0]))
saver.save(session, os.path.join(checkpoint_dir, 'model'), i)