-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsurface_plot.py
72 lines (58 loc) · 2.01 KB
/
surface_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import scipy.linalg
from mpl_toolkits.mplot3d import axes3d
from matplotlib.ticker import MaxNLocator
import itertools
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
import matplotlib
plt.rcParams['svg.fonttype'] = 'none'
def polyfit2d(x, y, z, order=3):
z = np.array(list(map(int, z)))
ncols = (order + 1)**2
G = np.zeros((x.size, ncols))
ij = itertools.product(range(order+1), range(order+1))
for k, (i, j) in enumerate(ij):
G[:, k] = x**i * y**j
m, _, _, _ = np.linalg.lstsq(G, z, rcond=None)
return m
def polyval2d(x, y, m):
order = int(np.sqrt(len(m))) - 1
ij = itertools.product(range(order+1), range(order+1))
z = np.zeros_like(x, dtype='float64')
for a, (i, j) in zip(m, ij):
z += a * x**i * y**j
return z
if __name__ == "__main__":
# wykres powierzchniowy
with open('./output_data/acc/filter_size_2.csv') as f:
X, Y, data_3 = [], [], []
set_y, size = set(), 0
for line in f:
x, y, z = [float(s) for s in line.split(';')]
set_y.add(y)
X.append(x)
Y.append(y)
data_3.append(z)
size = len(set_y)
X = np.array(X)
Y = np.array(Y)
# data_3 = np.array(data_3).reshape((size,-1))
data_3 = np.array(data_3)
data_1 = X.reshape((-1, size))
data_2 = Y.reshape((-1, size))
data = np.c_[X, Y, data_3]
mn = np.min(data, axis=0)
mx = np.max(data, axis=0)
Z = polyval2d(data_1, data_2, polyfit2d(data_1.flatten(), data_2.flatten(), data_3))
fig = plt.figure()
ax = plt.axes(projection='3d')
plt.xlabel('ilość filtrów warstwa 1.')
plt.ylabel('ilość filtrów warstwa 2.')
ax.set_zlabel('ACC[%]')
# plt.xticks(np.arange(1, 101, step=10))
# plt.yticks(np.arange(1, 41, step=10))
ax.plot_surface(data_2, data_1, Z, cmap=cm.coolwarm,
rstride=1, cstride=1, linewidth=2, antialiased=True)
# ax.scatter(X, Y, data_3, c='r', s=50)
plt.show()