-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFrontal_Velocity.py
112 lines (88 loc) · 3.35 KB
/
Frontal_Velocity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
Scripts to extract frontal velocity from image sequences
"""
import os
import numpy as np
import copy
import cv2
__author__ = 'MNR'
__all__ = ['fit_line', 'img_process', 'delete_duplicates']
def fit_line(data):
assert data.shape[1] == 2, "Data is not an nx2 array."
x = data[:, 0]
y = data[:, 1]
A = np.vstack([x, np.ones(len(y))]).T
return np.linalg.lstsq(A, y)[0]
class img_process(object):
def __init__(self, img_path):
img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2GRAY)
self.img = img
def threshold(self, thresh=None):
if thresh is None:
(t_ref, b_img) = cv2.threshold(self.img, 0, 1,
cv2.THRESH_BINARY_INV |
cv2.THRESH_OTSU)
self.thresh = t_ref
elif isinstance(thresh, tuple):
b_img = cv2.adaptiveThreshold(self.img, 1,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, thresh[0],
thresh[1])
else:
img_max = np.max(self.img)
b_img = cv2.threshold(self.img, thresh, img_max,
cv2.THRESH_BINARY_INV)[1]
b_img[b_img == img_max] = 1
self.img_b = b_img
def flip(self):
img = copy.copy(self.img)
img_b = copy.copy(self.img_b)
self.img = img[:, ::-1]
self.img_b = img_b[:, ::-1]
def crop(self, ycrop=None, xcrop=None):
img_crop = self.img
b_crop = self.img_b
if ycrop is not None:
img_crop = img_crop[ycrop[0]:ycrop[1], :]
b_crop = b_crop[ycrop[0]:ycrop[1], :]
if xcrop is not None:
img_crop = img_crop[:, xcrop[0]:xcrop[1]]
b_crop = b_crop[:, xcrop[0]:xcrop[1]]
self.img_c = img_crop
self.img_b = b_crop
def erode(self, erode_size=(15, 1), erode_n=1, binary_in=True):
kernel = np.ones(erode_size, np.uint8)
if binary_in:
erosion = cv2.erode(self.img_b, kernel, iterations=erode_n)
self.img_b = erosion
else:
erosion = cv2.erode(self.img, kernel, iterations=erode_n)
self.img = erosion
def find_front(self, direction='left'):
ypos, xpos = np.where(self.img_b == 1)
yedge, xedge = np.shape(self.img_b)
if ypos.shape[0] > 0:
min_pos = xpos.argmin()
xmin, ymin = xpos[min_pos], ypos[min_pos]
if xmin == 0:
xmin = np.nan
if ymin == 0:
ymin = np.nan
max_pos = xpos.argmax()
xmax, ymax = xpos[max_pos], ypos[max_pos]
if xmax == xedge - 1:
xmax = np.nan
if ymax == yedge - 1:
ymax = np.nan
else:
xmin, xmax, ymin, ymax = np.nan, np.nan, np.nan, np.nan
if direction.lower().startswith('l'):
self.ypos = ymin
self.xpos = xmin
else:
self.ypos = ymax
self.xpos = xmax
def delete_duplicates(path):
for file in os.listdir(path):
if file.endswith('(1).png'):
os.remove(os.path.join(path, file))