-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain_nowcast.py
193 lines (162 loc) · 7.8 KB
/
train_nowcast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import sys
sys.path.append(os.path.join(os.getcwd(), 'src'))
import csv
import time
import argparse
import logging
import pandas as pd
import numpy as np
import tensorflow as tf
from datetime import datetime
from socket import gethostname
from tensorflow.keras import models,optimizers
from tensorflow.keras.losses import mean_squared_error
from tensorflow.keras.callbacks import ModelCheckpoint,LambdaCallback,TensorBoard,CSVLogger
from models.nowcast_unet import create_model
from models.nowcast_gan import generator,discriminator
from losses.style_loss import vggloss,vggloss_scaled
from readers.nowcast_reader import get_data
from utils.trainutils import train_step
from utils.utils import setuplogging,log_args,print_args,make_callback_dirs
from metrics import probability_of_detection,success_rate,critical_success_index
MEAN=33.44
SCALE=47.54
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--loss_fn', type=str, default='mse', choices=['mse', 'vgg', 'mse+vgg', 'cgan'])
parser.add_argument('--train_data', type=str, help='path to training data file',default='data/interim/nowcast_training.h5')
parser.add_argument('--batch_size', type=int, help='batch size', default=4)
parser.add_argument('--nepochs', type=int, help='number of epochs', default=5)
parser.add_argument('--num_train', type=int, help='number of training sequences to read', default=1024)
parser.add_argument('--lr', type=float, help='learning rate', default=0.001)
parser.add_argument('--verbosity', type=int, default=2)
parser.add_argument('--logdir', type=str, help='log directory', default='./logs')
args, unknown = parser.parse_known_args()
return args
def get_loss_fn(loss):
choices = {'mse':[mean_squared_error],
'vgg':[vggloss],
'mse+vgg':[mean_squared_error, vggloss_scaled] }
return choices[loss]
def get_callbacks(model, logdir):
# callback directories
logging.info(f'creating directories')
tensorboard_dir,imgs_dir,weights_dir = make_callback_dirs(logdir)
logging.info(f'tensorboard dir : {tensorboard_dir}')
logging.info(f'image dir : {imgs_dir}')
logging.info(f'weights dir : {weights_dir}')
# define callbacks
metrics_file = os.path.join(logdir, 'metrics.csv')
save_checkpoint = ModelCheckpoint(os.path.join(weights_dir, 'weights_{epoch:02d}.h5'),
save_best=True, save_weights_only=False, mode='auto')
tensorboard_callback = TensorBoard(log_dir=tensorboard_dir)
csv_callback = CSVLogger( metrics_file )
callbacks = [csv_callback, save_checkpoint, tensorboard_callback]
return callbacks
def get_metrics(nout=1):
def pod74(y_true,y_pred):
return probability_of_detection(y_true,y_pred,np.array(nout*[(74.0-MEAN)/SCALE],dtype=np.float32))
def pod133(y_true,y_pred):
return probability_of_detection(y_true,y_pred,np.array(nout*[(133.0-MEAN)/SCALE],dtype=np.float32))
def sucr74(y_true,y_pred):
return success_rate(y_true,y_pred,np.array(nout*[(74-MEAN)/SCALE],dtype=np.float32))
def sucr133(y_true,y_pred):
return success_rate(y_true,y_pred,np.array(nout*[(133-MEAN)/SCALE],dtype=np.float32))
def csi74(y_true,y_pred):
return critical_success_index(y_true,y_pred,np.array(nout*[(74-MEAN)/SCALE],dtype=np.float32))
def csi133(y_true,y_pred):
return critical_success_index(y_true,y_pred,np.array(nout*[(133-MEAN)/SCALE],dtype=np.float32))
return [pod74,pod133,sucr74,sucr133,csi74,csi133]
def get_model(args):
# define loss functions and weights
loss_fn = get_loss_fn(args.loss_fn)
# losses can potentially be weighted differently when
# using MSE and VGG style and content as the loss function
loss_weights = len(loss_fn)*[1.0]
# create one or multi-output model based on the number of loss
# functions provided
inputs, outputs = create_model(input_shape=(384,384,13))
model = models.Model(inputs=inputs, outputs=len(loss_fn)*[outputs])
# create optimizer
opt = optimizers.Adam()
logging.info('compiling model')
model.compile(optimizer=opt,
loss_weights=loss_weights,
metrics=get_metrics(outputs.get_shape()[-1]),
loss=loss_fn,
experimental_run_tf_function=False)
logging.info('compilation done')
return model,loss_fn,loss_weights
def train(model, data, batch_size, num_epochs, loss_fn, loss_weights, callbacks, verbosity):
# data : (train_IN,train_OUT,test_IN,test_OUT)
# train
logging.info('training')
t0 = time.time()
y = model.fit(x=data[0], y=len(loss_fn)*[data[1]],
batch_size=batch_size,
epochs=num_epochs,
validation_data=(data[2], len(loss_fn)*[data[3]]),
callbacks=callbacks,
verbose=verbosity)
t1 = time.time()
logging.info(f'training time : {t1-t0} sec.')
return y
def train_gan(data, args):
# instantiate models
g = generator()
d = discriminator()
# optimizers
g_opt = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
d_opt = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
tensorboard_dir, _, weights_dir = make_callback_dirs(args.logdir)
summary_file = os.path.join(tensorboard_dir, datetime.now().strftime("%Y%m%d-%H%M%S"))
summary_writer = tf.summary.create_file_writer(summary_file)
logging.info('training')
with open(os.path.join(args.logdir, 'metrics.csv'), 'w') as fp:
writer = csv.writer(fp)
writer.writerow(['gen_total_loss','gen_gan_loss','gen_l1_loss','disc_loss'])
for epoch in range(args.nepochs):
for idx in range(0, data[0].shape[0], args.batch_size):
# train on a batch of data
input_image = data[0][idx:idx+args.batch_size,::]
target = data[1][idx:idx+args.batch_size,::]
gan_losses = train_step(g, g_opt, d, d_opt, [input_image], [target], epoch, summary_writer)
# write stats at the end of the batch
# gan_losses is a list of the following losses -
# gen_total_loss,gen_gan_loss,gen_l1_loss,disc_loss
writer.writerow([A.numpy() for A in gan_losses])
fp.flush()
logging.info(f'epoch {epoch} - gen_total_loss: {gan_losses[0]} - gen_gan_loss: {gan_losses[1]} - gen_l1_loss: {gan_losses[2]} - disc_loss: {gan_losses[3]}')
# since we write our own training loop, there is no concept of callbacks
# this is the end of one epoch - here we can run on the test/val data and generate
# intermediate outputs
g.save(os.path.join(weights_dir, f'generator-{epoch}.h5'))
d.save(os.path.join(weights_dir, f'discriminator-{epoch}.h5'))
return
def main(args):
data = get_data(args.train_data, end=args.num_train)
logging.info('data loading completed')
logging.info(f'num. train : {data[0].shape}')
logging.info(f'num. val : {data[2].shape}')
if args.loss_fn == 'cgan':
train_gan(data, args)
else:
model,loss_fn,loss_weights = get_model(args)
callbacks = get_callbacks(model, args.logdir)
y = train(model, data, args.batch_size, args.nepochs, loss_fn,
loss_weights, callbacks, args.verbosity)
history_file = os.path.join(args.logdir, 'history.csv')
hist_df = pd.DataFrame(y.history)
with open(history_file, mode='w') as f:
hist_df.to_csv(f)
logging.info(f'history saved to {history_file}')
return
if __name__ == '__main__':
args = get_args()
if not os.path.exists(args.logdir):
os.mkdir(args.logdir)
setuplogging(os.path.join(args.logdir, '0.log'))
log_args(args)
main(args)
print('all done')