-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsift.py
485 lines (434 loc) · 21 KB
/
sift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# -*- coding: utf-8 -*-
import os, cv2
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import skimage.io as skio
import skimage.transform as skt
from skimage.measure import ransac
from skimage import exposure
from skimage.util import img_as_ubyte
# %%
# =============================================================================
# DATA_ROOT = './Datasets/Stefan/'
# img1 = cv2.imread(DATA_ROOT+'HE/146558_2_HE.tif')
# #img_MPM = cv2.imread(DATA_ROOT+'MPM/146558_2_MPM.tif',0)
# img2 = cv2.imread(DATA_ROOT+'SHG/146558_2_SHG.tif', 0)
# img2 = np.rot90(img2, k=3)
# img2 = cv2.normalize(src=img2, dst=None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
#
# =============================================================================
# %% Python replacement for cv2.drawMatches()
def draw_matches(img1, kp1, img2, kp2, matches, color=None):
"""Draws lines between matching keypoints of two images.
Keypoints not in a matching pair are not drawn.
Places the images side by side in a new image and draws circles
around each keypoint, with line segments connecting matching pairs.
You can tweak the r, thickness, and figsize values as needed.
Args:
img1: An openCV image ndarray in a grayscale or color format.
kp1: A list of cv2.KeyPoint objects for img1.
img2: An openCV image ndarray of the same format and with the same
element type as img1.
kp2: A list of cv2.KeyPoint objects for img2.
matches: A list of DMatch objects whose trainIdx attribute refers to
img1 keypoints and whose queryIdx attribute refers to img2 keypoints.
color: The color of the circles and connecting lines drawn on the images.
A 3-tuple for color images, a scalar for grayscale images. If None, these
values are randomly generated.
"""
# We're drawing them side by side. Get dimensions accordingly.
# Handle both color and grayscale images.
# if len(img1.shape) == 3:
# new_shape = (max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1], img1.shape[2])
# elif len(img1.shape) == 2:
# new_shape = (max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1])
if len(img1.shape) == 2:
img1 = np.repeat(img1.reshape(img1.shape[0], img1.shape[1], 1), 3, axis=-1)
if len(img2.shape) == 2:
img2 = np.repeat(img2.reshape(img2.shape[0], img2.shape[1], 1), 3, axis=-1)
new_shape = (max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1], 3)
new_img = np.zeros(new_shape, type(img1.flat[0]))
# Place images onto the new image.
new_img[0:img1.shape[0],0:img1.shape[1]] = img1
new_img[0:img2.shape[0],img1.shape[1]:img1.shape[1]+img2.shape[1]] = img2
# Draw lines between matches. Make sure to offset kp coords in second image appropriately.
r = 5
thickness = 2
if color:
c = color
for m in matches:
# Generate random color for RGB/BGR and grayscale images as needed.
if not color:
c = np.random.randint(0,256,3)# if len(img1.shape) == 3 else np.random.randint(0,256)
c = (int(c[0]), int(c[1]), int(c[2]))
# So the keypoint locs are stored as a tuple of floats. cv2.line(), like most other things,
# wants locs as a tuple of ints.
end1 = tuple(np.round(kp1[m.queryIdx].pt).astype(int))
end2 = tuple(np.round(kp2[m.trainIdx].pt).astype(int) + np.array([img1.shape[1], 0]))
cv2.line(new_img, end1, end2, c, thickness)
cv2.circle(new_img, end1, r, c, thickness)
cv2.circle(new_img, end2, r, c, thickness)
return new_img
# %%
def register_sift(img1, img2, ttype='rigid', equalhist=False):
# img1 = cv2.imread('./Datasets/Eliceiri_patches/patch_trans60-80_rot15-20/B/test/1B_A4_T.tif', 0)
# img2 = cv2.imread('./Datasets/Eliceiri_patches/patch_trans60-80_rot15-20/B/test/1B_A4_R.tif', 0)
#img1 = cv2.imread('./Datasets/Eliceiri_patches_fake/patch_trans60-80_rot15-20/p2p_A/1B_A1_T.png', 0)
#img2 = cv2.imread('./Datasets/Eliceiri_patches/patch_trans60-80_rot15-20/A/test/1B_A1_R.tif', 0)
''' Register img1 to img2
'''
img1_ori = img1
# if equalhist:
# if img1.ndim == 2:
# img1 = cv2.equalizeHist(img1)
## img1 = exposure.equalize_adapthist(img1, clip_limit=0.03)
# if img2.ndim == 2:
# img2 = cv2.equalizeHist(img2)
## img2 = exposure.equalize_adapthist(img2, clip_limit=0.03)
sift = cv2.xfeatures2d.SIFT_create(500)
keypoints1, descriptors1 = sift.detectAndCompute(img1, None)
#keypoints_MPM, descriptors_MPM = sift.detectAndCompute(img_MPM, None)
keypoints2, descriptors2 = sift.detectAndCompute(img2, None)
# =============================================================================
# # KNN Matcher with default params
# bf = cv2.BFMatcher()
# matches = bf.knnMatch(descriptors1,descriptors2,k=2)
# # Apply ratio test
# good = []
# for m,n in matches:
# if m.distance < 0.75*n.distance:
# good.append([m])
# img3 = cv2.drawMatchesKnn(img1,keypoints1,img2,keypoints2,good,None,flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
# plt.imshow(img3)
# =============================================================================
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
matches = bf.match(descriptors1, descriptors2)
matches = sorted(matches, key = lambda x:x.distance)
# img3 = cv2.drawMatches(img1, keypoints1, img2, keypoints2, matches[:15], None, flags=2)
img3 = draw_matches(img1, keypoints1, img2, keypoints2, matches[:15], color=None)
# plt.imshow(img3)
# =============================================================================
# Extract location of good matches
points1 = np.zeros((len(matches), 2), dtype=np.float32)
points2 = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points1[i, :] = keypoints1[match.queryIdx].pt
points2[i, :] = keypoints2[match.trainIdx].pt
if ttype == 'rigid':
# if RANSAC
tform, inliers = ransac((points2, points1), skt.EuclideanTransform, min_samples=3,
residual_threshold=2, max_trials=100)
outliers = inliers == False
# # else
# tform = skt.estimate_transform('euclidean', points2, points1) # the returned tform is for skt.wrap ONLY!
img1Reg = skt.warp(img1_ori, tform)
# tform = skt.estimate_transform('euclidean', points1, points2)
# img1Reg = skt.warp(img1_ori, tform.inverse)
elif ttype == 'affine':
# Find homography
# h, mask = cv2.findHomography(points1, points2, cv2.RANSAC)
# affine
h, mask = cv2.estimateAffinePartial2D(points1, points2, method=cv2.RANSAC)
# Use homography
height, width = img2.shape[:2]
# img1Reg = cv2.warpPerspective(img1, h, (width, height))
# affine
img1Reg = cv2.warpAffine(img1_ori, h, (width, height))
# plt.imshow(img1Reg)
return img3, img1Reg, tform
def register_sift_batch_stefan(data_root, target_dir):
# target_dir='./outputs/SIFT/Stefan/'
dirA = data_root + 'HE/'
dirB = data_root + 'SHG/'
dir_matches = target_dir + 'matches'
dir_results = target_dir + 'results'
if not os.path.exists(dir_matches):
os.makedirs(dir_matches)
if not os.path.exists(dir_results):
os.makedirs(dir_results)
suffixA = '_' + os.listdir(dirA)[0].split('_')[-1]
nameAs = set([name[:-len(suffixA)] for name in os.listdir(dirA)])
suffixB = '_' + os.listdir(dirB)[0].split('_')[-1]
nameBs = set([name[:-len(suffixB)] for name in os.listdir(dirB)])
f_names = nameAs & nameBs
for f_name in tqdm(f_names):
f_nameA = f_name + suffixA
f_nameB = f_name + suffixB
imgA = cv2.imread(dirA + f_nameA)
imgB = cv2.imread(dirB + f_nameB, 0)
imgB = np.rot90(imgB, k=3)
imgB = cv2.normalize(src=imgB, dst=None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
try:
img_match, imgA2, tform = register_sift(imgA, imgB)
except:
heightA, widthA = imgA.shape[:2]
widthB = imgB.shape[1]
img_match = np.zeros((heightA, widthA+widthB))
imgA2 = np.zeros((heightA, widthA))
skio.imsave(f'{dir_matches}/{f_name}.tif', img_match)
skio.imsave(f'{dir_results}/{f_name}_HEreg.tif', imgA2)
return
def register_sift_batch_eliceiri(data_root, target_dir, mode='a2b'):
# data_root='./Datasets/Eliceiri_test/processed/'
# target_dir = './outputs/SIFT/Eliceiri/'
# assert mode in ['a2b', 'b2a'], "mode must be in ['a2b', 'b2a']"
# dirA = data_root + 'A/test/'
# dirB = data_root + 'B/test/'
dir_matches = target_dir + 'matches'
dir_results = target_dir + 'results'
if not os.path.exists(dir_matches):
os.makedirs(dir_matches)
if not os.path.exists(dir_results):
os.makedirs(dir_results)
# suffixA = '_' + os.listdir(dirA)[0].split('_')[-1]
# nameAs = set([name[:-len(suffixA)] for name in os.listdir(dirA)])
# suffixB = '_' + os.listdir(dirB)[0].split('_')[-1]
# nameBs = set([name[:-len(suffixB)] for name in os.listdir(dirB)])
# f_names = nameAs & nameBs
#
# if mode=='a2b':
# for f_name in tqdm(f_names):
# f_nameA = f_name + '_T.tif'
# f_nameB = f_name + '_R.tif'
# imgA = cv2.imread(dirA + f_nameA, 0)
# imgB = cv2.imread(dirB + f_nameB)
#
# try:
# img_match, imgA2, tform = register_sift(imgA, imgB)
# except:
# heightA, widthA = imgA.shape
# widthB = imgB.shape[1]
# img_match = np.zeros((heightA, widthA+widthB))
# imgA2 = np.zeros((heightA, widthA))
#
# skio.imsave(f'{dir_matches}/{f_name}.tif', img_match)
# skio.imsave(f'{dir_results}/{f_name}_Areg.tif', imgA2)
# elif mode=='b2a':
# for f_name in tqdm(f_names):
# f_nameA = f_name + '_R.tif'
# f_nameB = f_name + '_T.tif'
# imgA = cv2.imread(dirA + f_nameA, 0)
# imgB = cv2.imread(dirB + f_nameB)
#
# try:
# img_match, imgB2, tform = register_sift(imgB, imgA)
# except:
# heightB, widthB = imgB.shape[:2]
# widthA = imgA.shape[1]
# img_match = np.zeros((heightB, widthA+widthB))
# imgB2 = np.zeros((heightB, widthB))
#
# skio.imsave(f'{dir_matches}/{f_name}.tif', img_match)
# skio.imsave(f'{dir_results}/{f_name}_Breg.tif', imgB2)
#
assert mode in ['a2b', 'b2a', 'a2a', 'b2b'], "mode must be in ['a2b', 'b2a', 'a2a', 'b2b']"
if mode=='a2b':
dir_src = data_root + 'A/test/'
dir_tar = data_root + 'B/test/'
elif mode=='b2a':
dir_src = data_root + 'B/test/'
dir_tar = data_root + 'A/test/'
elif mode=='a2a':
dir_src = data_root + 'A/test/'
dir_tar = data_root + 'A/test/'
elif mode=='b2b':
dir_src = data_root + 'B/test/'
dir_tar = data_root + 'B/test/'
suffix_src = '_' + os.listdir(dir_src)[0].split('_')[-1]
name_srcs = set([name[:-len(suffix_src)] for name in os.listdir(dir_src)])
suffix_tar = '_' + os.listdir(dir_tar)[0].split('_')[-1]
name_tars = set([name[:-len(suffix_tar)] for name in os.listdir(dir_tar)])
f_names = name_srcs & name_tars
f_names = list(f_names)
f_names.sort()
for f_name in tqdm(f_names):
img_src = cv2.imread(dir_src + f'{f_name}_T.tif')
img_tar = cv2.imread(dir_tar + f'{f_name}_R.tif')
try:
img_match, img_rec, tform = register_sift(img_src, img_tar)
except:
height_src, width_src = img_src.shape
width_tar = img_tar.shape[1]
img_match = np.zeros((height_src, width_src+width_tar))
img_rec = np.zeros((height_src, width_src))
skio.imsave(f'{dir_matches}/{f_name}.tif', img_match)
skio.imsave(f'{dir_results}/{f_name}_rec.tif', img_rec)
return
# %%
if __name__ == '__main__':
register_sift_batch_stefan(data_root='./Datasets/Stefan/', target_dir='./outputs/SIFT/Stefan/')
register_sift_batch_eliceiri(
data_root='./Datasets/Eliceiri_test/processed/',
target_dir='./outputs/SIFT/Eliceiri_a2b/',
mode='a2b')
register_sift_batch_eliceiri(
data_root='./Datasets/Eliceiri_test/processed/',
target_dir='./outputs/SIFT/Eliceiri_b2a/',
mode='b2a')
register_sift_batch_eliceiri(
data_root='./Datasets/Eliceiri_patches/patch_trans60-80_rot15-20/',
target_dir='./outputs/SIFT/Eliceiri_rot15-20_a2b/',
mode='a2b')
register_sift_batch_eliceiri(
data_root='./Datasets/Eliceiri_patches/patch_trans60-80_rot15-20/',
target_dir='./outputs/SIFT/Eliceiri_rot15-20_b2a/',
mode='b2a')
# %% Make sample images
def make_sample(data_root, f_name, gan_name='', data_root_fake=None, preprocess='nopre', mode='b2a'):
# data_root='./Datasets/Eliceiri_patches/patch_tlevel2/'
# f_name='1B_A1'
# gan_name='p2p_A'
# data_root_fake='./Datasets/Eliceiri_patches_fake'
# preprocess='nopre'
# mode='b2a'
dir_A = data_root + 'A/test/'
dir_B = data_root + 'B/test/'
if gan_name != '':
assert data_root_fake, "data_root_fake must not be None when given gan_name."
assert gan_name in ['cyc_A', 'cyc_B', 'p2p_A', 'p2p_B', 'drit_A', 'drit_B'], (
"gan_name must be in 'cyc_A', 'cyc_B', 'p2p_A', 'p2p_B', 'drit_A', 'drit_B'")
if '_A' in gan_name:
dir_B = f'{data_root_fake}/{os.path.split(data_root[:-1])[-1]}/{gan_name}/'
elif '_B' in gan_name:
dir_A = f'{data_root_fake}/{os.path.split(data_root[:-1])[-1]}/{gan_name}/'
assert mode in ['a2b', 'b2a', 'a2a', 'b2b'], "mode must be in ['a2b', 'b2a', 'a2a', 'b2b']"
if mode=='a2b':
dir_src = dir_A
dir_tar = dir_B
elif mode=='b2a':
dir_src = dir_B
dir_tar = dir_A
elif mode=='a2a':
dir_src = dir_A
dir_tar = dir_A
elif mode=='b2b':
dir_src = dir_B
dir_tar = dir_B
assert preprocess in ['', 'nopre', 'PCA', 'hiseq'], "preprocess must be in ['', 'nopre', 'PCA', 'hiseq']"
suffix_src = '_' + os.listdir(dir_src)[0].split('_')[-1]
suffix_tar = '_' + os.listdir(dir_tar)[0].split('_')[-1]
img_src = cv2.imread(dir_src + f"{f_name}_T.{suffix_src.split('.')[-1]}")
img_tar = cv2.imread(dir_tar + f"{f_name}_R.{suffix_tar.split('.')[-1]}")
# # for debugging
# img_src = cv2.imread('./Datasets/Eliceiri_patches_fake/patch_tlevel2/p2p_A/1B_A1_T.png')
# img_tar = cv2.imread('./Datasets/Eliceiri_patches/patch_tlevel2/A/test/1B_A1_R.tif')
try:
img_match, img_rec, tform = register_sift(img_src, img_tar)
except:
height_src, width_src = img_src.shape[:2]
width_tar = img_tar.shape[1]
img_match = np.zeros((height_src, width_src+width_tar))
img_rec = np.zeros((height_src, width_src))
dir_matches = f'{os.path.dirname(data_root[:-1])}/example/sift'
if not os.path.exists(dir_matches):
os.makedirs(dir_matches)
# skio.imsave(f'{dir_matches}/sift_{gan_name}_{mode}_{preprocess}.png', img_match)
cv2.imwrite(f'{dir_matches}/sift_{gan_name}_{mode}_{preprocess}.png', img_match)
# skio.imsave(f'{dir_results}/{f_name}_rec.png', img_rec)
return
# %%
for gan in tqdm(['p2p_A', 'p2p_B', 'cyc_A', 'cyc_B', 'drit_A', 'drit_B']):
make_sample(
data_root='./Datasets/Eliceiri_patches/patch_tlevel2/',
f_name='1B_A1',
gan_name=gan,
data_root_fake='./Datasets/Eliceiri_patches_fake',
preprocess='nopre',
mode='b2a')
for mode in tqdm(['a2a', 'b2b']):
make_sample(
data_root='./Datasets/Eliceiri_patches/patch_tlevel2/',
f_name='1B_A1',
gan_name='',
data_root_fake='./Datasets/Eliceiri_patches_fake',
preprocess='nopre',
mode=mode)
# %% testing script
# =============================================================================
# w=834
# coords_ref = np.array(([0,0], [0,w], [w,w], [w,0]))
# centre_patch = np.array((w, w)) / 2. - 0.5
#
# rot_radian = -0.325329283
# #rotation_trans = skt.SimilarityTransform(rotation=rot_radian).params[:2, :2]
# tx_trans, ty_trans = -61.63485592, -75.82964144
# #translation = skt.SimilarityTransform(translation=(tx_trans, ty_trans)).translation
# tform_patch = tform_centred(radian=rot_radian, translation=(tx_trans, ty_trans), center=centre_patch)
# coords_trans = skt.matrix_transform(coords_ref, tform_patch.params)
# # equivalent:
# # coords_trans = np.dot(rotation, coords_ref.T).T + tform_patch.translation
# # coords_trans = np.dot(rotation, (coords_ref + translation - centre_patch).T).T + centre_patch.T
#
# tform_1to2 = skt.estimate_transform('euclidean', points2, points1)
# tx, ty = tform_1to2.translation
# rotation = tform_1to2.params[:2, :2]
#
# # if rotate first, translate last, then the required translation T is:
# translation_last = tform_1to2.translation + np.dot(rotation, centre_patch.T) - centre_patch
# tform_patch_rec = tform_centred_rec(radian=tform_1to2.rotation, translation=translation_last, center=centre_patch)
# # tform_patch_rec == tform_1to2, useless
#
#
# img1to2 = skt.warp(img1_ori, tform_1to2)
# ## test warp function
# #t1 = skt.SimilarityTransform(translation=tform_1to2.translation)
# #t2 = skt.SimilarityTransform(rotation=tform_1to2.rotation)
# #img11 = skt.warp(img1_ori, t1)
# #img12 = skt.warp(img11, t2)
#
# coords_rec1 = skt.matrix_transform(coords_trans, tform_1to2.params)
# trans_forcoords = np.dot(rotation, tform_1to2.translation.T)
# tform_patch_rec = skt.SimilarityTransform(rotation=tform_1to2.rotation, translation=trans_forcoords)
# coords_rec2 = skt.matrix_transform(coords_trans, tform_patch_rec.params)
#
# tform_2to1 = skt.estimate_transform('euclidean', points1, points2)
# img2to1 = skt.warp(img1_ori, tform_2to1.inverse)
#
#
# # %%
# img1 = skio.imread('./pytorch-CycleGAN-and-pix2pix/results/eliceiri_p2p_rotation_b2a/1B_A1_R_fake_B.png', as_grey=True)
# img1 = img_as_ubyte(img1)
# img2 = skio.imread('./Datasets/Eliceiri_patches/example/A/test/1B_A1_R.tif')
# img_match, imgA2 = register_sift(img1, img2, equalhist=False)
# skio.imshow(img_match)
# skio.imsave(f'./Datasets/Eliceiri_patches/example/sift_b2a_p2p.tif', img_match)
# # %%
# MIN_MATCH_COUNT = 1
#
# sift = cv2.xfeatures2d.SIFT_create()
#
# keypoints1, descriptors1 = sift.detectAndCompute(img1, None)
# #keypoints_MPM, descriptors_MPM = sift.detectAndCompute(img_MPM, None)
# keypoints2, descriptors2 = sift.detectAndCompute(img2, None)
#
# FLANN_INDEX_KDTREE = 1
# index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
# search_params = dict(checks = 50)
# flann = cv2.FlannBasedMatcher(index_params, search_params)
# matches = flann.knnMatch(descriptors1, descriptors2, k=2)
#
# # store all the good matches as per Lowe's ratio test.
# good = [m for m, n in matches if m.distance < 0.7*n.distance]
#
# if len(good) > MIN_MATCH_COUNT:
# src_pts = np.float32([keypoints1[m.queryIdx].pt for m in good]).reshape(-1,1,2)
# dst_pts = np.float32([keypoints2[m.trainIdx].pt for m in good]).reshape(-1,1,2)
# M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# matchesMask = mask.ravel().tolist()
# h, w = img1.shape[:2]
# # pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
# # dst = cv2.perspectiveTransform(pts,M)
# # img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)
# else:
# print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) )
# matchesMask = None
#
# draw_params = dict(matchColor = (0,255,0), # draw matches in green color
# singlePointColor = None,
# matchesMask = matchesMask, # draw only inliers
# flags = 2)
# img3 = cv2.drawMatches(img1,keypoints1,img2,keypoints2,good,None,**draw_params)
#
#
# =============================================================================