-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathshow_samples.py
221 lines (194 loc) · 10.3 KB
/
show_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# -*- coding: utf-8 -*-
# make plots from csv data
import pandas as pd
import os, cv2, random
import numpy as np
import matplotlib.pyplot as plt
from glob import glob
from tqdm import tqdm
import skimage.io as skio
import skimage.util as sku
from skimage import exposure
# %%
def channelwise_rescale(img_src, percentiles):
img_tar = np.zeros(img_src.shape, dtype=np.uint8)
assert len(img_src.shape) == 3
channels = img_src.shape[-1]
assert channels == len(percentiles), "len(percentiles) must match number of channels."
for c in range(channels):
img_tar[..., c] = exposure.rescale_intensity(img_src[..., c], in_range=tuple(percentiles[c]))
return img_tar
# %%
src_dir = './Datasets/Zurich_dataset_v1.0/images_tif'
tar_dir = './Datasets/Zurich'
dir_IR = f'{tar_dir}/IR'
dir_RGB = f'{tar_dir}/RGB'
if not os.path.exists(dir_IR):
os.makedirs(dir_IR)
if not os.path.exists(dir_RGB):
os.makedirs(dir_RGB)
id_tif = 11
img_name = f'zh{id_tif}.png'
img_BGR = skio.imread(f'{dir_RGB}/{img_name}')
img_RGB = img_BGR[..., ::-1]
p1, p99 = np.percentile(img_RGB[..., 0], (1, 99))
img_en = np.zeros(img_RGB.shape, dtype=np.uint8)
for c in range(img_RGB.shape[-1]):
p1, p99 = np.percentile(img_RGB[..., c], (1, 99))
img_en[..., c] = exposure.rescale_intensity(img_RGB[..., c], in_range=(p1, p99))
# %%
def result_montage(dataset, n=3):
# dataset='Zurich'
# modality='A'
# n=3
assert dataset in ['Balvan', 'Eliceiri', 'Zurich'], "dataset must be in ['Balvan', 'Eliceiri', 'Zurich']"
if dataset == 'Eliceiri':
dataroot_real = f'./Datasets/{dataset}_patches/patch_tlevel1'
dataroot_fake = f'./Datasets/{dataset}_patches_fake/patch_tlevel1'
sample_name = '1B_A2'
sample_path = {
'A':f'./Datasets/HighRes_Splits/WSI/train/{sample_name}_MI.tif',
'B':f'./Datasets/HighRes_Splits/WSI/train/{sample_name}_WB.tif'}
intro_examples = {
'realA':'./Datasets/Eliceiri_patches/patch_tlevel4/A/test/1B_E2_R.tif',
'realB':'./Datasets/Eliceiri_patches/patch_tlevel4/B/test/1B_E2_T.tif',
'fakeA':'./Datasets/Eliceiri_patches_fake/patch_tlevel4/p2p_A/1B_E2_T.png',
'fakeB':'./Datasets/Eliceiri_patches_fake/patch_tlevel4/star_B/1B_E2_R.png'}
else:
dataroot_real = f'./Datasets/{dataset}_patches/fold{{fold}}/patch_tlevel1'
dataroot_fake = f'./Datasets/{dataset}_patches_fake/fold{{fold}}/patch_tlevel1'
if dataset == 'Zurich':
sample_name = 'zh11'
sample_path = {
'A':f'./Datasets/Zurich/IR/{sample_name}.png',
'B':f'./Datasets/Zurich/RGB/{sample_name}.png'}
elif dataset == 'Balvan':
sample_name = 'DU145_do_2_f60'
sample_path = {
'A':f'./Datasets/Balvan/GREEN/{sample_name}.tif',
'B':f'./Datasets/Balvan/QPI/{sample_name}.tif'}
intro_examples = {
'realA':'./Datasets/Balvan_patches/fold2/patch_tlevel4/A/test/PNT1A_st_3_f00_01_02_R.png',
'realB':'./Datasets/Balvan_patches/fold2/patch_tlevel4/B/test/PNT1A_st_3_f00_01_02_T.png',
'fakeA':'./Datasets/Balvan_patches_fake/fold2/patch_tlevel4/cyc_A/PNT1A_st_3_f00_01_02_T.png',
'fakeB':'./Datasets/Balvan_patches_fake/fold2/patch_tlevel4/cyc_B/PNT1A_st_3_f00_01_02_R.png'}
def imread(img_path, dataset):
assert dataset in ['Balvan', 'Eliceiri', 'Zurich'], "dataset must be in ['Balvan', 'Eliceiri', 'Zurich']"
img = skio.imread(img_path) if dataset == 'Eliceiri' else cv2.imread(img_path)
if len(img.shape) == 2:
img = np.stack((img,)*3, axis=-1)
if img.shape[-1] == 1:
img = np.repeat(img, 3, axis=-1)
return img
def enhance(img, percentiles, dataset):
assert dataset in ['Balvan', 'Eliceiri', 'Zurich'], "dataset must be in ['Balvan', 'Eliceiri', 'Zurich']"
if dataset == 'Eliceiri':
img_en = exposure.rescale_intensity(img, tuple(percentiles))
else:
img_en = channelwise_rescale(img, percentiles)
return img_en
# dataroot_real.format(fold=fold) for fold in folds
save_dir = f'./Datasets/{dataset}_patches/result_imgs/'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
direction = {'A': 'R', 'B': 'T'}
title_dict = {
'A':{'ori':'Modality A', 'cyc':'CycleGAN', 'drit':'DRIT++', 'p2p':'Pix2pix', 'star':'StarGANv2', 'comir':'CoMIR'},
'B':{'ori':'Modality B', 'cyc':'CycleGAN', 'drit':'DRIT++', 'p2p':'Pix2pix', 'star':'StarGANv2', 'comir':'CoMIR'},
}
gan_names = ['cyc_A', 'cyc_B', 'drit_A', 'drit_B', 'p2p_A', 'p2p_B', 'star_A', 'star_B', 'comir_A', 'comir_B']
modalities = ['A', 'B']
# Pick samples
f_names = {}
for i_sample in range(n):
fold = None if dataset == 'Eliceiri' else i_sample % 3 + 1
f_name = os.path.basename(random.choice(glob(f'{dataroot_real}/A/test/*_R.*'.format(fold=fold)))).split('.')[0][:-2]
while f_name in f_names:
f_name = os.path.basename(random.choice(glob(f'{dataroot_real}/A/test/*_R.*'.format(fold=fold)))).split('.')[0][:-2]
f_names[f_name] = fold
# Contrast Enhance
## load all images
imgs = {
'A': {'sample': imread(sample_path['A'], dataset)},
'B': {'sample': imread(sample_path['B'], dataset)},
}
imgs_flat = {'A':[], 'B':[]}
pers = {}
for modality in modalities:
gan_types = [folder for folder in gan_names if modality not in folder]
img = imgs[modality]['sample']
h, w, channels = img.shape
imgs_flat[modality].append(img.reshape((h*w, channels)))
# include intro examples into percentile computing
if dataset != 'Zurich':
for rof in ['real', 'fake']:
img = imread(intro_examples[f'{rof}{modality}'], dataset)
h, w, channels = img.shape
imgs_flat[modality].append(img.reshape((h*w, channels)))
imgs[modality][f'intro_{rof}'] = img
for f_name, fold in f_names.items():
for i_gan in range(len(gan_types)+1):
if i_gan == 0:
title = 'ori'
suffix = os.path.basename(glob(f'{dataroot_real}/{modality}/test/*_{direction[modality]}.*'.format(fold=fold))[0]).split('.')[-1]
img = imread(f'{dataroot_real}/{modality}/test/{f_name}_{direction[modality]}.{suffix}'.format(fold=fold), dataset)
imgs[modality][f'{title}_{f_name}'] = img
else:
title, modality_gan = gan_types[i_gan-1].split('_')
suffix = os.path.basename(glob(f'{dataroot_fake}/{title}_{modality}/*_{direction[modality]}.*'.format(fold=fold))[0]).split('.')[-1]
img = imread(f'{dataroot_fake}/{title}_{modality}/{f_name}_{direction[modality]}.{suffix}'.format(fold=fold), dataset)
imgs[modality][f'{title}_{f_name}'] = img
if title != 'comir':
h, w, channels = img.shape
imgs_flat[modality].append(img.reshape((h*w, channels)))
## compute per-channel percentiles
imgs_flat[modality] = np.concatenate(imgs_flat[modality], axis=0)
if dataset == 'Eliceiri':
pers[modality] = np.percentile(imgs_flat[modality], (1, 99))
else:
pers[modality] = [np.percentile(imgs_flat[modality][..., c], (1, 99)) for c in range(channels)]
# Save enhanced sample original images
for modality in modalities:
sample_en = enhance(imgs[modality]['sample'], pers[modality], dataset)
skio.imsave(save_dir + f'{dataset}_{sample_name}_{modality}_en.png', sample_en)
# save enhanced intro examples
if dataset != 'Zurich':
for rof in ['real', 'fake']:
sample_en = enhance(imgs[modality][f'intro_{rof}'], pers[modality], dataset)
skio.imsave(save_dir + f'{dataset}_intro_{rof}{modality}_en.png', sample_en)
# Draw sample GAN imgs
for modality in modalities:
gan_types = [folder for folder in gan_names if modality not in folder]
ncol, nrow = len(gan_types)+1, n
gap = 0.01
fig, axs = plt.subplots(
nrows=n, ncols=len(gan_types)+1,
gridspec_kw=dict(wspace=gap, hspace=gap,
top=1. - 0.5 / (nrow + 1), bottom=0.5 / (nrow + 1),
left=0.5 / (ncol + 1), right=1 - 0.5 / (ncol + 1)),
figsize=(ncol + 1 + (ncol-1)*gap, nrow + 1 + (nrow-1)*gap), dpi=200,
sharex='col', sharey='row')
i_sample = 0
for f_name, fold in f_names.items():
for i_gan in range(len(gan_types)+1):
if i_gan == 0:
title = 'ori'
suffix = os.path.basename(glob(f'{dataroot_real}/{modality}/test/*_{direction[modality]}.*'.format(fold=fold))[0]).split('.')[-1]
img = enhance(imgs[modality][f'{title}_{f_name}'], pers[modality], dataset)
else:
title, modality_gan = gan_types[i_gan-1].split('_')
suffix = os.path.basename(glob(f'{dataroot_fake}/{title}_{modality_gan}/*_{direction[modality]}.*'.format(fold=fold))[0]).split('.')[-1]
img = imgs[modality_gan][f'{title}_{f_name}']
if title != 'comir':
img = enhance(img, pers[modality_gan], dataset)
axs[i_sample, i_gan].imshow(img)
axs[i_sample, i_gan].label_outer()
axs[i_sample, i_gan].set_axis_off()
if i_sample == n - 1:
axs[i_sample, i_gan].set_title(title_dict[modality][title], y=-0.25, fontsize=12, color='black')
i_sample += 1
plt.savefig(save_dir + f'{dataset}_samples_{modality}_en.png', format='png', dpi=300, bbox_inches='tight')
return
# %%
for dataset in ['Balvan', 'Zurich']:
result_montage(dataset, n=3)