-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutils.py
330 lines (276 loc) · 12.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright 2017 Division of Medical Image Computing, German Cancer Research Center (DKFZ)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import matplotlib
from sklearn.metrics import confusion_matrix
matplotlib.use('Agg')
import numpy as np
from skimage.morphology import label
from sklearn.model_selection import KFold
import matplotlib.pyplot as plt
from theano import tensor as T
from medpy import metric
from skimage.transform import resize
def postprocess_prediction(seg):
# basically look for connected components and choose the largest one, delete everything else
mask = seg != 0
lbls = label(mask, 8)
lbls_sizes = [np.sum(lbls==i) for i in np.unique(lbls)]
largest_region = np.argmax(lbls_sizes[1:]) + 1
seg[lbls != largest_region]=0
return seg
def pad_patient_3D(patient, shape_must_be_divisible_by=16, min_size=None):
shp = patient.shape
new_shp = [shp[0], shp[1] + shape_must_be_divisible_by - shp[1] % shape_must_be_divisible_by, shp[2] +
shape_must_be_divisible_by - shp[2] % shape_must_be_divisible_by]
if min_size is not None:
new_shp = np.max(np.vstack((np.array(new_shp), np.array(min_size))), 0)
for i in range(len(shp) - 1):
if shp[i + 1] % shape_must_be_divisible_by == 0:
new_shp[i + 1] -= shape_must_be_divisible_by
return reshape_by_padding_upper_coords(patient, new_shp, 0), shp
def predict_patient_3D_net(net, patient_data, do_mirroring, do_bayesian, num_repeats, BATCH_SIZE=None,
new_shape_must_be_divisible_by=16, preprocess_fn=None, min_size=None):
if preprocess_fn is not None:
patient_data = preprocess_fn(patient_data)
patient, old_shape = pad_patient_3D(patient_data, new_shape_must_be_divisible_by, min_size)
new_shp = patient.shape
data = np.zeros(tuple([1] + [1] + list(new_shp)), dtype=np.float32)
data[0, 0] = patient
if BATCH_SIZE is not None:
data = np.vstack([data] * BATCH_SIZE)
all_preds = []
if do_mirroring:
x = 4
else:
x = 1
for i in range(num_repeats):
for m in range(x):
data_for_net = np.array(data)
if m == 0:
pass
if m == 1:
data_for_net = data_for_net[:, :, :, :, ::-1]
if m == 2:
data_for_net = data_for_net[:, :, :, ::-1, :]
if m == 3:
data_for_net = data_for_net[:, :, :, ::-1, ::-1]
p = net.pred_proba(data_for_net, not do_bayesian)
if m == 0:
pass
if m == 1:
p = p[:, :, :, :, ::-1]
if m == 2:
p = p[:, :, :, ::-1, :]
if m == 3:
p = p[:, :, :, ::-1, ::-1]
all_preds.append(p)
stacked = np.vstack(all_preds)[:, :, :old_shape[0], :old_shape[1], :old_shape[2]]
predicted_segmentation = stacked.mean(0).argmax(0)
try:
predicted_segmentation = postprocess_prediction(predicted_segmentation)
except:
print "post processing failed, probably due to empty segmentation (which in turn is due to empty time steps" \
" in the raw data)"
bayesian_predictions = stacked
softmax_pred = stacked.mean(0)
return predicted_segmentation, bayesian_predictions, softmax_pred
def predict_patient_2D_net(pred_fn, patient_data, do_mirroring, num_repeats, BATCH_SIZE=None,
new_shape_must_be_divisible_by=16, preprocess_fn=None, min_size=None):
if preprocess_fn is not None:
patient_data = preprocess_fn(patient_data)
patient, old_shape = pad_patient_3D(patient_data, new_shape_must_be_divisible_by, min_size=min_size)
new_shp = patient.shape
data = np.zeros(tuple([1] + [1] + list(new_shp[1:])), dtype=np.float32)
seg_pred = np.zeros(patient.shape, dtype=np.uint8)
seg_pred_softmax = np.zeros([4] + list(patient.shape), dtype=np.float32)
if do_mirroring:
x = 4
else:
x = 1
for slice in range(patient.shape[0]):
all_preds = []
for i in range(num_repeats):
for m in range(x):
data[0, 0] = patient[slice]
if m == 1:
data_m = data
elif m == 2:
data_m = data[:, :, ::-1, ::-1]
elif m == 3:
data_m = data[:, :, :, ::-1]
else:
data_m = data[:, :, ::-1, :]
if BATCH_SIZE is not None:
data_for_net = np.vstack([data_m] * BATCH_SIZE)
else:
data_for_net = data_m
p = pred_fn(data_for_net)
if m == 1:
p = p
elif m == 2:
p = p[:, :, ::-1, ::-1]
elif m == 3:
p = p[:, :, :, ::-1]
else:
p = p[:, :, ::-1, :]
all_preds.append(p)
stacked = np.vstack(all_preds)
predicted_segmentation = stacked.mean(0).argmax(0)
seg_pred[slice] = predicted_segmentation
seg_pred_softmax[:, slice] = stacked.mean(0)
seg_pred = postprocess_prediction(seg_pred)
seg_pred = seg_pred[:old_shape[0], :old_shape[1], :old_shape[2]]
patient = patient[:old_shape[0], :old_shape[1], :old_shape[2]]
seg_pred_softmax = seg_pred_softmax[:, :old_shape[0], :old_shape[1], :old_shape[2]]
return patient, seg_pred, seg_pred_softmax
def compute_typical_metrics(seg_gt, seg_pred, labels):
assert seg_gt.shape == seg_pred.shape
mask_pred = np.zeros(seg_pred.shape, dtype=bool)
mask_gt = np.zeros(seg_pred.shape, dtype=bool)
for l in labels:
mask_gt[seg_gt == l] = True
mask_pred[seg_pred == l] = True
vol_gt = np.sum(mask_gt)
vol_pred = np.sum(mask_pred)
try:
cm = confusion_matrix(mask_pred.astype(int).ravel(), mask_gt.astype(int).ravel())
TN = cm[0][0]
FN = cm[0][1]
FP = cm[1][0]
TP = cm[1][1]
precision = TP / float(TP + FP)
recall = TP / float(TP + FN)
fpr = FP / float(FP + TN)
false_omission_rate = FN / float(FN + TN)
except:
precision = np.nan
recall = np.nan
fpr = np.nan
false_omission_rate = np.nan
try:
dice = metric.dc(mask_pred, mask_gt)
if np.sum(mask_gt) == 0:
dice = np.nan
except:
dice = np.nan
try:
assd = metric.assd(mask_gt, mask_pred)
except:
assd = np.nan
return precision, recall, fpr, false_omission_rate, dice, assd, vol_gt, vol_pred
def get_split(fold, seed=12345):
# this is seeded, will be identical each time
kf = KFold(n_splits=5, shuffle=True, random_state=seed)
all_keys = np.arange(1, 101)
splits = kf.split(all_keys)
for i, (train_idx, test_idx) in enumerate(splits):
train_keys = all_keys[train_idx]
test_keys = all_keys[test_idx]
if i == fold:
break
return train_keys, test_keys
def soft_dice(y_pred, y_true):
# y_pred is softmax output of shape (num_samples, num_classes)
# y_true is one hot encoding of target (shape= (num_samples, num_classes))
intersect = T.sum(y_pred * y_true, 0)
denominator = T.sum(y_pred, 0) + T.sum(y_true, 0)
dice_scores = T.constant(2) * intersect / (denominator + T.constant(1e-6))
return dice_scores
def hard_dice(y_pred, y_true, n_classes):
# y_true must be label map, not one hot encoding
y_true = T.flatten(y_true)
y_pred = T.argmax(y_pred, axis=1)
dice = T.zeros(n_classes)
for i in range(n_classes):
i_val = T.constant(i)
y_true_i = T.eq(y_true, i_val)
y_pred_i = T.eq(y_pred, i_val)
dice = T.set_subtensor(dice[i], (T.constant(2.) * T.sum(y_true_i * y_pred_i) + T.constant(1e-7)) /
(T.sum(y_true_i) + T.sum(y_pred_i) + T.constant(1e-7)))
return dice
def plotProgress(all_training_losses, all_training_accs, all_validation_losses, all_valid_accur, fname,
samplesPerEpoch=10, val_dice_scores=None, dice_labels=None, ylim_score=None):
fig, ax1 = plt.subplots(figsize=(16, 12))
trainLoss_x_values = np.arange(1/float(samplesPerEpoch), len(all_training_losses)/float(samplesPerEpoch)+0.000001,
1/float(samplesPerEpoch))
val_x_values = np.arange(1, len(all_validation_losses)+0.001, 1)
ax1.plot(trainLoss_x_values, all_training_losses, 'b--', linewidth=2)
ax1.plot(val_x_values, all_validation_losses, color='b', linewidth=2)
ax1.set_ylabel('loss')
ax1.set_xlabel('epoch')
if ylim_score is not None:
ax1.set_ylim(ylim_score)
box = ax1.get_position()
ax1.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax2 = ax1.twinx()
ax2.plot(trainLoss_x_values, all_training_accs, 'r--', linewidth=2)
ax2.plot(val_x_values, all_valid_accur, color='r', linewidth=2)
ax2.set_ylabel('accuracy')
for t2 in ax2.get_yticklabels():
t2.set_color('r')
ax2_legend_text = ['trainAcc', 'validAcc']
if val_dice_scores is not None:
assert len(val_dice_scores) == len(all_validation_losses)
num_auc_scores_per_timestep = val_dice_scores.shape[1]
for auc_id in xrange(num_auc_scores_per_timestep):
ax2.plot(val_x_values, val_dice_scores[:, auc_id], linestyle=":", linewidth=4, markersize=10)
ax2_legend_text.append(dice_labels[auc_id])
ax2.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax1.legend(['trainLoss', 'validLoss'], loc="center right", bbox_to_anchor=(1.3, 0.4))
ax2.legend(ax2_legend_text, loc="center right", bbox_to_anchor=(1.3, 0.6))
plt.savefig(fname)
plt.close()
def softmax_helper(x):
e_x = T.exp(x - x.max(axis=1, keepdims=True))
return e_x / e_x.sum(axis=1, keepdims=True)
def reshape_by_padding_upper_coords(image, new_shape, pad_value=None):
shape = tuple(list(image.shape))
new_shape = tuple(np.max(np.concatenate((shape, new_shape)).reshape((2,len(shape))), axis=0))
if pad_value is None:
if len(shape) == 2:
pad_value = image[0,0]
elif len(shape) == 3:
pad_value = image[0, 0, 0]
else:
raise ValueError("Image must be either 2 or 3 dimensional")
res = np.ones(list(new_shape), dtype=image.dtype) * pad_value
if len(shape) == 2:
res[0:0+int(shape[0]), 0:0+int(shape[1])] = image
elif len(shape) == 3:
res[0:0+int(shape[0]), 0:0+int(shape[1]), 0:0+int(shape[2])] = image
return res
def resize_segmentation(segmentation, new_shape, order=3):
unique_labels = np.unique(segmentation)
assert len(segmentation.shape) == len(new_shape), "new shape must have same dimensionality as segmentation"
if len(unique_labels) == 2 or order == 0:
return resize(segmentation, new_shape, order, mode="constant", cval=0, clip=True)
else:
reshaped_multihot = np.zeros([len(unique_labels)] + list(new_shape), dtype=segmentation.dtype)
for i, c in enumerate(unique_labels):
reshaped_multihot[i] = np.round(resize((segmentation == c).astype(float), new_shape, order, mode="constant",
cval=0, clip=True))
reshaped = unique_labels[np.argmax(reshaped_multihot, 0)]
return reshaped
def resize_softmax_output(softmax_output, new_shape, order=3):
'''
:param softmax_output: c x x x y x z
:param new_shape: x x y x z
:param order:
:return:
'''
new_shp = [softmax_output.shape[0]] + list(new_shape)
result = np.zeros(new_shp, dtype=softmax_output.dtype)
for i in range(softmax_output.shape[0]):
result[i] = resize(softmax_output[i].astype(float), new_shape, order, "constant", 0, True)
return result