-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
370 lines (284 loc) · 12.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import os
import random
from dataclasses import asdict, dataclass, field
from typing import Callable, Dict, List, Literal, Optional, Tuple, TypeVar, Union
from typing import get_args as t_get_args
import lightning as L
import lightning.pytorch.callbacks as L_callbacks
import mlflow
import numpy as np
import torch
import torch_geometric.transforms as T
from db_transformer.data.dataset_defaults.fit_dataset_defaults import FIT_DATASET_DEFAULTS, FITDatasetDefaults, TaskType
from db_transformer.data.fit_dataset import FITRelationalDataset
from db_transformer.data.utils import HeteroDataBuilder
from db_transformer.db.schema_autodetect import SchemaAnalyzer
from db_transformer.helpers.timer import Timer
from db_transformer.schema.schema import ColumnDef, Schema
from simple_parsing import ArgumentParser, DashVariant
from sqlalchemy.engine import Connection
from torch.utils.data import Dataset
from torch_geometric.data import HeteroData
from torch_geometric.loader import DataLoader
# lt.monkey_patch()
# device = torch.device('cuda')
# torch.set_default_tensor_type('torch.cuda.FloatTensor')
mlflow.set_tracking_uri("http://localhost:2222/")
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
@dataclass
class DataConfig:
pass
AggrType = Literal['sum', 'mean', 'min', 'max', 'cat']
DatasetType = Literal[
'Accidents', 'Airline', 'Atherosclerosis', 'Basketball_women', 'Bupa', 'Carcinogenesis',
'Chess', 'CiteSeer', 'ConsumerExpenditures', 'CORA', 'CraftBeer', 'Credit', 'cs', 'Dallas', 'DCG', 'Dunur',
'Elti', 'ErgastF1', 'Facebook', 'financial', 'ftp', 'geneea', 'genes', 'Hepatitis_std', 'Hockey', 'imdb_ijs',
'imdb_MovieLens', 'KRK', 'legalActs', 'medical', 'Mondial', 'Mooney_Family', 'MuskSmall', 'mutagenesis',
'nations', 'NBA', 'NCAA', 'Pima', 'PremierLeague', 'PTE', 'PubMed_Diabetes', 'Same_gen', 'SAP', 'SAT',
'Shakespeare', 'Student_loan', 'Toxicology', 'tpcc', 'tpcd', 'tpcds', 'trains', 'university', 'UTube',
'UW_std', 'VisualGenome', 'voc', 'WebKP', 'world'
]
DEFAULT_DATASET_NAME: DatasetType = 'voc'
@dataclass
class ModelConfig:
dim: int = 64
attn: Literal['encoder', 'attn'] = 'attn'
aggr: AggrType = 'sum'
gnn_sub_layers: int = 1
attn_sub_layers: int = 1
gnn_layers: List[int] = field(default_factory=lambda: [])
mlp_layers: List[int] = field(default_factory=lambda: [])
batch_norm: bool = False
layer_norm: bool = False
class TheLightningModel(L.LightningModule):
def __init__(self, model, defaults: FITDatasetDefaults, lr: float) -> None:
super().__init__()
self.model = model
self.lr = lr
self.defaults = defaults
self.loss_module = torch.nn.CrossEntropyLoss()
self._best_train_loss = float('inf')
self._best_train_acc = 0.0
self._best_val_acc = 0.0
self._best_test_acc = 0.0
def forward(self, data: HeteroData, mode: Literal['train', 'test', 'val']):
target_tbl = data[self.defaults.target_table]
out = self.model(data.x_dict, data.edge_index_dict)
if mode == 'train':
mask = target_tbl.train_mask
elif mode == 'val':
mask = target_tbl.val_mask
elif mode == 'test':
mask = target_tbl.test_mask
else:
raise ValueError()
loss = self.loss_module(out[mask], target_tbl.y[mask])
acc = (out[mask].argmax(dim=-1) == target_tbl.y[mask]).sum().float() / mask.sum()
return loss, acc
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.lr)
def training_step(self, batch, batch_idx):
loss, acc = self.forward(batch, mode="train")
self.log("train_loss", loss, batch_size=1, prog_bar=True)
if loss < self._best_train_loss:
self._best_train_loss = loss
self.log("best_train_loss", loss, batch_size=1, prog_bar=True)
self.log("train_acc", acc, batch_size=1, prog_bar=True)
if acc > self._best_train_acc:
self._best_train_acc = acc
self.log("best_train_acc", acc, batch_size=1, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
_, acc = self.forward(batch, mode="val")
self.log("val_acc", acc, batch_size=1, prog_bar=True)
if acc > self._best_val_acc:
self._best_val_acc = acc
self.log("best_val_acc", acc, batch_size=1, prog_bar=True)
def test_step(self, batch, batch_idx):
_, acc = self.forward(batch, mode="test")
self.log("test_acc", acc, batch_size=1, prog_bar=True)
if acc > self._best_test_acc:
self._best_test_acc = acc
self.log("best_test_acc", acc, batch_size=1, prog_bar=True)
_T = TypeVar('_T')
class SimpleDataset(Dataset[_T]):
def __init__(self, data: Union[List[_T], Tuple[_T], _T], *other_data: _T) -> None:
all_data = []
if isinstance(data, list) or isinstance(data, tuple):
all_data.extend(data)
else:
all_data.append(data)
all_data.extend(other_data)
self._data = all_data
def __len__(self):
return len(self._data)
def __getitem__(self, index) -> HeteroData:
return self._data[index]
def get_schema_analyzer(conn: Connection, defaults: FITDatasetDefaults) -> SchemaAnalyzer:
target_type = 'categorical' if defaults.task == TaskType.CLASSIFICATION else 'numeric'
return SchemaAnalyzer(
conn,
target=(defaults.target_table, defaults.target_column),
target_type=target_type,
verbose=True
)
def build_data(
c: Callable[[HeteroDataBuilder], _T],
dataset=DEFAULT_DATASET_NAME,
conn: Optional[Connection] = None,
schema: Optional[Schema] = None,
device=None) -> _T:
has_sub_connection = conn is None
if has_sub_connection:
conn = FITRelationalDataset.create_remote_connection(dataset)
defaults = FIT_DATASET_DEFAULTS[dataset]
if schema is None:
schema = get_schema_analyzer(conn, defaults).guess_schema()
builder = HeteroDataBuilder(conn,
schema,
target_table=defaults.target_table,
target_column=defaults.target_column,
separate_target=True,
create_reverse_edges=True,
fillna_with=0.0,
device=device)
out = c(builder)
if has_sub_connection:
conn.close()
return out
def create_data(dataset=DEFAULT_DATASET_NAME, data_config: Optional[DataConfig] = None, device=None):
if data_config is None:
data_config = DataConfig()
with FITRelationalDataset.create_remote_connection(dataset) as conn:
defaults = FIT_DATASET_DEFAULTS[dataset]
schema_analyzer = FITRelationalDataset.create_schema_analyzer(dataset, conn, verbose=True)
schema = schema_analyzer.guess_schema()
data_pd, (data, column_defs, colnames) = build_data(
lambda builder: (builder.build_as_pandas(), builder.build(with_column_names=True)),
dataset=dataset,
conn=conn,
schema=schema,
# device=device
)
n_total = data[defaults.target_table].x.shape[0]
data = T.RandomNodeSplit('train_rest', num_val=int(0.2 * n_total), num_test=0)(data)
return data, data_pd, schema, defaults, column_defs, colnames
def create_model(
data: HeteroData,
schema: Schema,
column_defs: Dict[str, List[ColumnDef]],
colnames: Dict[str, List[str]],
dataset_name=DEFAULT_DATASET_NAME,
model_config: Optional[ModelConfig] = None,
device=None):
from db_transformer.nn.models.db_gnn import DBGNN
from db_transformer.nn.models.transformer import DBTransformer
if model_config is None:
model_config = ModelConfig()
defaults = FIT_DATASET_DEFAULTS[dataset_name]
model_config.gnn_layers = [0] * 5
out_dim = schema[defaults.target_table].columns[defaults.target_column].card
# if False:
# model = DBGNN(
# model_config.dim, out_dim, model_config.dim, len(model_config.gnn_layers), data.metadata(), schema,
# column_defs=column_defs,
# column_names=colnames,
# config=model_config,
# target_table=defaults.target_table,
# )
model = DBTransformer(
model_config.dim, out_dim, model_config.dim, len(model_config.gnn_layers), data.metadata(), 1, schema,
column_defs=column_defs,
column_names=colnames,
config=model_config,
target_table=defaults.target_table,
)
return model
class TimerOrEpochsCallback(L_callbacks.Callback):
def __init__(self, epochs: int, min_train_time_s: float, epochs_multiplier: int = 10) -> None:
self.timer = Timer(cuda=False, unit='s')
self.min_train_time_s = min_train_time_s
self.epochs = epochs
self.epochs_multiplier = epochs_multiplier
def on_train_start(self, trainer: "L.Trainer", pl_module: "L.LightningModule") -> None:
self.timer.start()
def on_train_epoch_end(self, trainer: "L.Trainer", pl_module: "L.LightningModule") -> None:
if trainer.current_epoch == self.epochs:
seconds = self.timer.end()
if seconds >= self.min_train_time_s:
# should stop
trainer.should_stop = True
trainer.strategy.barrier()
else:
# continue until ten-fold this many epochs
self.epochs *= self.epochs_multiplier
def main(
dataset_name: str = DEFAULT_DATASET_NAME,
data_config: Optional[DataConfig] = None,
model_config: Optional[ModelConfig] = None,
epochs: int = 100,
learning_rate: float = 3e-4,
min_train_time_s: float = 60.,
cuda: bool = False):
if data_config is None:
data_config = DataConfig()
if model_config is None:
model_config = ModelConfig()
device = 'cuda' if cuda else 'cpu'
data, data_pd, schema, defaults, column_defs, colnames = create_data(dataset_name, data_config, device)
model = create_model(data, schema, column_defs, colnames, dataset_name, model_config, device)
lightning_model = TheLightningModel(model, defaults=defaults, lr=learning_rate)
trainer = L.Trainer(
accelerator='gpu' if cuda else 'cpu',
devices=1,
deterministic=True,
callbacks=[L_callbacks.Timer(),
L_callbacks.ModelCheckpoint('./torch-models/',
filename=dataset_name + '-{epoch}-{train_acc:.3f}-{val_acc:.3f}',
mode='max', monitor='val_acc'),
TimerOrEpochsCallback(epochs=epochs, min_train_time_s=min_train_time_s)],
min_epochs=epochs,
max_epochs=-1,
max_steps=-1,
)
dataloader = DataLoader([data], batch_size=1)
trainer.fit(lightning_model, dataloader, dataloader)
if __name__ == "__main__":
parser = ArgumentParser(add_option_string_dash_variants=DashVariant.DASH)
parser.add_argument('dataset', choices=t_get_args(DatasetType))
parser.add_argument("--epochs", "-e", type=int, default=100)
parser.add_argument("--learning-rate", "--lr", "-r", type=float, default=0.0001)
parser.add_argument("--min-train-time", "-t", type=float, default=60.)
parser.add_arguments(ModelConfig, dest="model_config")
parser.add_arguments(DataConfig, dest="data_config")
args = parser.parse_args()
model_config: ModelConfig = args.model_config
data_config: DataConfig = args.data_config
dataset: DatasetType = args.dataset
cuda: bool = False
epochs: int = args.epochs
do_mlflow: bool = False
learning_rate: float = args.learning_rate
min_train_time_s: float = args.min_train_time
def _run_main():
main(dataset, data_config, model_config, epochs, learning_rate, min_train_time_s, cuda)
if do_mlflow:
mlflow.set_experiment("rl_db - lukas - new experiments II")
mlflow.pytorch.autolog()
file_name = os.path.basename(__file__)
with mlflow.start_run(run_name=f"gatconv+mlp") as run:
mlflow.set_tag('dataset', dataset)
mlflow.set_tag('Model Source', file_name)
for k, v in asdict(model_config).items():
mlflow.log_param(k, v)
for k, v in asdict(data_config).items():
mlflow.log_param(k, v)
try:
_run_main()
except Exception as ex:
mlflow.set_tag('exception', str(ex))
raise ex
else:
_run_main()