-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathnoddyverse.py
173 lines (147 loc) · 6.59 KB
/
noddyverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import matplotlib
from pandas import DataFrame
from matplotlib.pyplot import imshow
from matplotlib import pyplot as plt
from random import seed
import random
import time
import gzip
from urllib.request import urlopen
import pandas as pd
import io
import requests
#%matplotlib inline
def rand_cmap(nlabels, type='bright', first_color_black=True, last_color_black=False, verbose=True):
"""
Creates a random colormap to be used together with matplotlib. Useful for segmentation tasks
:param nlabels: Number of labels (size of colormap)
:param type: 'bright' for strong colors, 'soft' for pastel colors
:param first_color_black: Option to use first color as black, True or False
:param last_color_black: Option to use last color as black, True or False
:param verbose: Prints the number of labels and shows the colormap. True or False
:return: colormap for matplotlib
Thanks to https://gist.github.com/delestro/54d5a34676a8cef7477e
"""
from matplotlib.colors import LinearSegmentedColormap
import colorsys
import numpy as np
np.random.seed(seed=0)
if type not in ('bright', 'soft'):
print ('Please choose "bright" or "soft" for type')
return
if verbose:
print('Number of labels: ' + str(nlabels))
# Generate color map for bright colors, based on hsv
if type == 'bright':
randHSVcolors = [(np.random.uniform(low=0.0, high=1),
np.random.uniform(low=0.2, high=1),
np.random.uniform(low=0.9, high=1)) for i in range(nlabels)]
# Convert HSV list to RGB
randRGBcolors = []
for HSVcolor in randHSVcolors:
randRGBcolors.append(colorsys.hsv_to_rgb(HSVcolor[0], HSVcolor[1], HSVcolor[2]))
if first_color_black:
randRGBcolors[0] = [0, 0, 0]
if last_color_black:
randRGBcolors[-1] = [0, 0, 0]
random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels)
# Generate soft pastel colors, by limiting the RGB spectrum
if type == 'soft':
low = 0.6
high = 0.95
randRGBcolors = [(np.random.uniform(low=low, high=high),
np.random.uniform(low=low, high=high),
np.random.uniform(low=low, high=high)) for i in range(nlabels)]
if first_color_black:
randRGBcolors[0] = [0, 0, 0]
if last_color_black:
randRGBcolors[-1] = [0, 0, 0]
random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels)
# Display colorbar
if verbose:
from matplotlib import colors, colorbar
from matplotlib import pyplot as plt
fig, ax = plt.subplots(1, 1, figsize=(15, 0.5))
bounds = np.linspace(0, nlabels, nlabels + 1)
norm = colors.BoundaryNorm(bounds, nlabels)
cb = colorbar.ColorbarBase(ax, cmap=random_colormap, norm=norm, spacing='proportional', ticks=None,
boundaries=bounds, format='%1i', orientation=u'horizontal')
return random_colormap
# download file, ungzip and stuff into numpy array
def get_gz_array(url,skiprows):
my_gzip_stream = urlopen(url)
my_stream = gzip.open(my_gzip_stream, 'r')
return(np.loadtxt(my_stream,skiprows=skiprows))
def display_models(his_filter,display_number):
cmap = rand_cmap(100, type='bright', first_color_black=False, last_color_black=False, verbose=False)
models=pd.read_csv('model_list/models.csv')
#display(models)
models2=models[models['event03'].str.contains(his_filter[0]) & models['event04'].str.contains(his_filter[1]) & models['event05'].str.contains(his_filter[2])]
models2=models2.reset_index(drop=True)
#display(models2)
model_number2=len(models2)
if(len(models2)):
print("sampling from",len(models2),"models matching filter",his_filter)
else:
print("no models found with filter", his_filter, "check list syntax and spelling of events")
return()
#seed random number generator
now = time.time()
seed(int(now))
url='https://cloudstor.aarnet.edu.au/plus/s/8ZT6tjOvoLWmLPx/download?path=%2f'
used=[]
z=0
fail=0
while z < display_number and fail < 1000:
ran =random.randint(0,model_number2-1)
if(ran in used):
continue
else:
used.append(ran)
file_split=models2.iloc[ran]['root'].split('/')
tail=models2.iloc[ran]['event03']+'_'+models2.iloc[ran]['event04']+'_'+models2.iloc[ran]['event05']+'&files='
root=url+tail+file_split[2]
path=root+'.mag.gz'
try:
mag=get_gz_array(path,8)
except:
fail=fail+1
continue
path=root+'.grv.gz'
grv=get_gz_array(path,skiprows=8)
path=root+'.g12.gz'
mod=get_gz_array(path,skiprows=0)
mod2=mod.reshape((200,200,200))
mod2=np.transpose(mod2,(0,2,1))
mod2.shape
vmin=np.amin(mod2)
vmax=np.amax(mod2)
show=True
print(ran,file_split[2],'STRATIGRAPHY TILT',models2.iloc[ran]['event_all'])
if(show):
fig, ax = plt.subplots(1,5,figsize=(13,13))
ax[0].axis('off')
ax[1].axis('off')
ax[2].axis('off')
ax[3].axis('off')
ax[4].axis('off')
ax[0].title.set_text('Mag' )
ax[1].title.set_text('Grav')
ax[2].title.set_text('Map')
ax[3].title.set_text('W (N) E')
ax[4].title.set_text('N (W) S')
ax[0].imshow(mag,cmap='rainbow')
ax[1].imshow(grv,cmap='rainbow')
ax[2].imshow(mod2[0,:,:],cmap=cmap, interpolation="nearest",vmin=vmin,vmax=vmax)
ax[3].imshow(mod2[:,0,:],cmap=cmap, interpolation="nearest",vmin=vmin,vmax=vmax)
ax[4].imshow(mod2[:,:,0],cmap=cmap, interpolation="nearest",vmin=vmin,vmax=vmax)
print("Download .his file:",root+".his.gz")
plt.show()
else:
matplotlib.image.imsave('grv/model_'+models2.iloc[ran]['root']+'_grv.png', mag,cmap='rainbow')
matplotlib.image.imsave('mag/model_'+models2.iloc[ran]['root']+'_mag.png', grv,cmap='rainbow')
matplotlib.image.imsave('map/model_'+models2.iloc[ran]['root']+'_map.png', mod2[0,:,:],cmap=cmap,vmin=vmin,vmax=vmax)
matplotlib.image.imsave('secWE/model_'+models2.iloc[ran]['root']+'_secWE.png', mod2[:,0,:],cmap=cmap,vmin=vmin,vmax=vmax)
matplotlib.image.imsave('secNS/model_'+models2.iloc[ran]['root']+'_secNS.png', mod2[:,:,0],cmap=cmap,vmin=vmin,vmax=vmax)
z=z+1