-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_banner.py
executable file
·139 lines (92 loc) · 3.75 KB
/
gen_banner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import pandas as pd
import shutil
import requests
import os
import time
import cv2
DIR = os.path.abspath(os.path.dirname("."))
BLACK_IMG = os.path.join(DIR, 'imgs', 'black.jpg')
def vconcat_resize(list_imgs, inter=cv2.INTER_CUBIC):
# Encontrar a altura minimo
w_min = min(img.shape[1] for img in list_imgs)
# Redimensionar as imagens
list_resize = [cv2.resize(img,
(w_min, int(img.shape[0] * w_min / img.shape[1])),
interpolation=inter) for img in list_imgs]
return cv2.vconcat(list_resize)
def hconcat_resize(list_imgs, inter=cv2.INTER_CUBIC):
# Encontrar a altura minimo
h_min = min(img.shape[0] for img in list_imgs)
# Redimensionar as imagens
list_resize = [cv2.resize(img,
(int(img.shape[1] * h_min / img.shape[0]), h_min),
interpolation=inter) for img in list_imgs]
return cv2.hconcat(list_resize)
def list_images(list_2d):
new_list = []
for paths in list_2d:
row = []
for path in paths:
print(path)
img = cv2.imread(path)
img = cv2.resize(img, (img.shape[0]-100, img.shape[1]-100))
row.append(img)
new_list.append(row)
return new_list
def create_2Dlist(list_img, row_size):
list_2d = []
# Criar a lista 2D com os caminhos
for i in range(0, len(list_img), row_size):
row = []
for j in range(i, i+row_size):
if j > len(list_img)-1:
row.insert(0, BLACK_IMG)
else:
row.append(list_img[j])
list_2d.append(row)
# Lista 2D com as imagens em cada linha
images = list_images(list_2d)
return images
def create_tile(list_img):
# Numero de Elementos de cada linha
row_size = 16
# Retornar imagens numa lista com row_size colunas
list_2d = create_2Dlist(list_img, row_size)
# Transformar horizontalmente
h_concat = [hconcat_resize(list_row) for list_row in list_2d]
# Transoformar verticalmente
v_concat = vconcat_resize(h_concat)
v_concat = cv2.resize(v_concat, (1800, 600), interpolation=cv2.INTER_CUBIC)
print(v_concat.shape)
# Guardar a Tile
cv2.imwrite("banner.jpg", v_concat)
def main():
# Dataset com os nomes de todos o streamers
df = pd.read_csv("streamers_mod.csv", usecols=["Nome", "Avatar", "Twitter"])
names = []
names_walk = os.walk(os.path.join(DIR, "imgs")).__next__()[2]
if len(names_walk) > 1:
names = [os.path.join(DIR, "imgs", path) for path in names_walk if path != "black.jpg"]
else:
for name, avatar, tt in zip(df["Nome"], df["Avatar"], df["Twitter"]):
img_name = name+".jpg"
url = avatar
fout = os.path.join(DIR, "imgs", img_name)
names.append(fout)
# Só fazer download se houver Twitter
if not isinstance(tt, float):
# Só fazer download se ainda não houver a imagem
if not os.path.exists(fout):
r = requests.get(url, stream=True)
if r.status_code == 200:
# Isto para que o tamanho do download não seja 0
r.raw.decode_content = True
with open(fout, "wb") as fw:
# Escrever a imagem no disco
shutil.copyfileobj(r.raw, fw)
else:
print(name)
names.pop()
create_tile(names)
if __name__ == "__main__":
main()