-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathnycbike20140409.py
121 lines (104 loc) · 3.54 KB
/
nycbike20140409.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# link: https://github.com/aptx1231/NYC-Dataset
import h5py
import pandas as pd
import numpy as np
import json
import util
outputdir = 'output/NYCBIKE20140409'
util.ensure_dir(outputdir)
dataurl = 'input/NYCBIKE20140409/'
dataname = outputdir+'/NYCBIKE20140409'
f = h5py.File(dataurl + 'NYC14_M16x8_T60_NewEnd.h5', 'r')
data = np.array(f['data'])
def get_geo():
li = []
ind = 0
for x in range(16):
for y in range(8):
li.append([ind, "Polygon", "[]", x, y])
ind += 1
return li
def remove_imcomplete_days(data, timestamps, t=24):
print("before removing", len(data))
date = []
days = []
days_incomplete = []
i = 0
print(len(timestamps))
while i < len(timestamps):
if int(str(timestamps[i])[10:12]) != 1:
i += 1
elif i + t - 1 < len(timestamps) \
and int(str(timestamps[i + t - 1])[10:12]) == t:
for j in range(24):
date.append(timestamps[i + j])
days.append(str(timestamps[i])[2:10])
i += t
else:
days_incomplete.append(str(timestamps[i])[2:10])
i += 1
print("imcomplete days", days_incomplete)
days = set(days)
idx = []
for i, t in enumerate(timestamps):
if str(timestamps[i])[2:10] in days:
idx.append(i)
data_ = data[idx]
print(len(date))
print(len(data_))
return date, data_
def del_date(date):
date_str = str(date)
s0 = date_str[2:6]
s1 = date_str[6:8]
s2 = date_str[8:10]
s3 = date_str[10:12]
num_s3 = int(s3) - 1
if num_s3 < 10:
str_s3 = '0' + str(num_s3)
else:
str_s3 = str(num_s3)
s = s0 + '-' + s1 + '-' + s2 + 'T' + str_s3 + ':00:00' + 'Z'
return s
new_date, new_data = remove_imcomplete_days(np.array(f['data']),
np.array(f['date']))
date_df = pd.DataFrame(new_date)
date_df['time'] = date_df[0].apply(del_date)
def get_dyna():
ind = 0
l = []
for x in range(16):
for y in range(8):
for time in range(len(date_df['time'])):
l.append([ind, "state", date_df['time'][time],
x, y, new_data[time][0][x][y],
new_data[time][1][x][y]])
ind += 1
return l
L0 = get_geo()
pd.DataFrame(L0, columns=["geo_id", "type", "coordinates", "row_id",
"column_id"]).to_csv(dataname + '.geo', index=False)
L1 = get_dyna()
pd.DataFrame(L1, columns=["dyna_id", "type", "time", "row_id",
"column_id", "new_flow",
"end_flow"]).to_csv(dataname + '.grid', index=False)
config = dict()
config['geo'] = dict()
config['geo']['including_types'] = ['Polygon']
config['geo']['Polygon'] = {"row_id": 'num', "column_id": 'num'}
config['grid'] = dict()
config['grid']['including_types'] = ['state']
config['grid']['state'] = {'row_id': 16, 'column_id': 8,
"new_flow": 'num', "end_flow": 'num'}
config['info'] = dict()
config['info']['data_col'] = ['new_flow', 'end_flow']
config['info']['data_files'] = ['NYCBIKE20140409']
config['info']['geo_file'] = 'NYCBIKE20140409'
config['info']['output_dim'] = 2
config['info']['time_intervals'] = 3600
config['info']['init_weight_inf_or_zero'] = 'inf'
config['info']['set_weight_link_or_dist'] = 'dist'
config['info']['calculate_weight_adj'] = False
config['info']['weight_adj_epsilon'] = 0.1
json.dump(config, open(outputdir + '/config.json',
'w', encoding='utf-8'), ensure_ascii=False)