-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathenvironment_selection.py
29 lines (27 loc) · 1.05 KB
/
environment_selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#!/usr/bin/env python
# encoding: utf-8
import numpy as np
from nd_sort import nd_sort
from crowding_distance import crowding_distance
def environment_selection(population, N):
'''
environmental selection in NSGA-II
:param population: current population
:param N: number of selected individuals
:return: next generation population
'''
front_no, max_front = nd_sort(population[1], N)
next_label = [False for i in range(front_no.size)]
for i in range(front_no.size):
if front_no[i] < max_front:
next_label[i] = True
crowd_dis = crowding_distance(population[1], front_no)
last = [i for i in range(len(front_no)) if front_no[i]==max_front]
rank = np.argsort(-crowd_dis[last])
delta_n = rank[: (N - int(np.sum(next_label)))]
rest = [last[i] for i in delta_n]
for i in rest:
next_label[i] = True
index = np.array([i for i in range(len(next_label)) if next_label[i]])
next_pop = [population[0][index,:], population[1][index,:]]
return next_pop, front_no[index], crowd_dis[index],index