-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.m
194 lines (167 loc) · 7.2 KB
/
script.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
% specify path to the folder with CSV files
path = '/Users/artemlenskiy/Dropbox/Development/Matlab/EduAn/Data/All2/';
filenames = dir(path);
n = 1;
clear stRecords;
clear courses
% Parse CSV files and store student info in the cell array courses
for k = 1:size(filenames,1)
if ~isempty(strfind(filenames(k).name, '.csv'))
% tables contains content of CSV files in the same format
tables{n} = readStudentCSV2([path, '/', filenames(k).name]);
%[gpa, hist] = calculateGPA(tables{n});
% structure contains parsed info, for now only GPA, and grades histogram
% stRecords{n} = struct('id', tables{n}(2,2), 'GPA', gpa, 'gradeshist', hist);
courses{n} = getCourses(tables{n});
n = n + 1;
end
end
earlierGraduation = []; % less than 8 semesters in total
clear leaveParams;
clear gpaBefore;
clear gpaAfter;
n = 1;
studentsCompletedCoursesIndexes = 0;
for k = 1:length(courses)
avgGradeEvolution = avgGradesPerSemester(courses{k});
lastSemester = find(avgGradeEvolution == 0);
if(isempty(lastSemester))
lastSemester = length(avgGradeEvolution);
else
lastSemester = lastSemester(1) - 1;
end
numCompletedSemesters = sum(avgGradeEvolution ~= 0 & ~isnan(avgGradeEvolution));
if(numCompletedSemesters < 8)
% skip students that completed less than 8
% semesters
earlierGraduation = [earlierGraduation, k];
continue;
end
semestersAttended = 1:lastSemester;
semestersAttended(isnan(avgGradeEvolution)) = [];
[breakLength_, breakSemester_] = max(diff(semestersAttended));
breakLength = breakLength_ - 1;
breakSemester = semestersAttended(breakSemester_) + 1;
leaveParams(n, :) = [breakLength, breakSemester];
gpaBefore(n) = avgGradeEvolution(breakSemester - 1);
gpaAfter(n) = avgGradeEvolution(breakSemester + breakLength);
studentsCompletedCoursesIndexes(n) = k;
n = n + 1;
end
% Visualize distribution of GPAs for students before and after the break at
% different semesters
hadLongBreak = find(leaveParams(:,1) >= 4);
for k = 2:5
breakSemester = k;
breakSemesterInd = find(leaveParams(hadLongBreak,2) == breakSemester);
%gpaBefore(hadLongBreak(breakSemesterInd))
%gpaAfter(hadLongBreak(breakSemesterInd))
figure('Position', [100, 100, 400, 200]), hold on;
h1 = histogram(gpaBefore(hadLongBreak(breakSemesterInd)), 10);
h1.BinWidth = 0.25;
h1.Normalization = 'probability';
h2 = histogram(gpaAfter(hadLongBreak(breakSemesterInd)), 10);
h2.BinWidth = 0.25;
h2.Normalization = 'probability';
title({[' Break after ', num2str(k-1),' semester'];...
['Total ', num2str(length(breakSemesterInd)),' students, ',...
' $\mu_1$ = ', num2str(mean(gpaBefore(hadLongBreak(breakSemesterInd)))),...
' $\pm$ ', num2str(std(gpaAfter(hadLongBreak(breakSemesterInd)))),...
', $\mu_2$ = ', num2str(mean(gpaAfter(hadLongBreak(breakSemesterInd)))),...
' $\pm$ ', num2str(std(gpaAfter(hadLongBreak(breakSemesterInd))))]}, 'Interpreter', 'Latex');
legend({'before', 'after'});
xticklabels({'F','Do','D+','Co','C+','Bo','B+', 'Ao', 'A+'})
xticks([0 1:0.5:4.5]);
hold off;
end
% Visulaize distribution of differences of GPAs for studens who have had a
% long break, and who did not have a long break.
noOrShortBreak = find(leaveParams(:,1) <= 2);
for k = 1:length(noOrShortBreak)
avgGradeEvolutionNoBreak(k, :) = avgGradesPerSemester(courses{studentsCompletedCoursesIndexes(noOrShortBreak(k))});
end
for breakSemester = 2:5
difNoBreak = avgGradeEvolutionNoBreak(:,breakSemester) - avgGradeEvolutionNoBreak(:,breakSemester - 1);
breakSemesterInd = find(leaveParams(hadLongBreak,2) == breakSemester);
difBreak = (gpaAfter(hadLongBreak(breakSemesterInd)) - gpaBefore(hadLongBreak(breakSemesterInd)))';
figure('Position', [100, 100, 400, 200]), hold on;
title({[' Break after ', num2str(breakSemester - 1),' semester'];...
['Total ', num2str(length(breakSemesterInd)),' students, ',...
' $\mu_1$ = ', num2str(mean(difNoBreak(~isnan(difNoBreak)))),...
' $\pm$ ', num2str(std(difNoBreak(~isnan(difNoBreak)))),...
', $\mu_2$ = ', num2str(mean(difBreak(~isnan(difBreak)))),...
' $\pm$ ', num2str(std(difBreak(~isnan(difBreak))))]}, 'Interpreter', 'Latex');
h1 = histogram(difNoBreak, 10);
h1.BinWidth = 0.25;
h1.Normalization = 'probability';
h2 = histogram(difBreak, 10);
h2.BinWidth = 0.25;
h2.Normalization = 'probability';
legend({'no or short break', 'long break'});
hold off;
end
% test
avgGradesPerSemester(courses{studentsCompletedCoursesIndexes(hadLongBreak(1))})
hadLongBreak = find(leaveParams(:,1) >= 4);
stdInds = find(leaveParams(hadLongBreak,2) == 8);
length(stdInds)
before = gpaBefore(hadLongBreak(stdInds));
after = gpaAfter(hadLongBreak(stdInds));
mean(before)
mean(after)
%
% hist([gpaBefore(hadLongBreak); gpaAfter(hadLongBreak)]');
% title(['$\mu_1$ = ', num2str(mean(gpaBefore(hadLongBreak))), ', $\mu_2$ = ', num2str(mean(gpaAfter(hadLongBreak)))], 'Interpreter', 'Latex');
% legend({'befor', 'after'});
% xticklabels({'F','Do','D+','Co','C+','Bo','B+', 'Ao', 'A+'})
% xticks([0 1:0.5:4.5]);
%
% noBreak = find(leaveParams(:,1) == .5);
% clear gpaBeforeAndAfterLeave;
% for k = 1:8
% leaveSemester{k} = find(leaveParams(hadLongBreak,2) == k);
% for l = 1:length(leaveSemester{k})
% gpaBeforeAndAfterLeave{k}(l, 1) = mean(avgGradeEvolution{leaveSemester{k}(l)}(2,1:leaveParams(k, 2)));
% gpaBeforeAndAfterLeave{k}(l, 2) = mean(avgGradeEvolution{leaveSemester{k}(l)}(2,leaveParams(k, 2)+1:end));
% end
% end
%compare students' GPA who had a break and did not have a break
% figure, hold on;
% for k = 1:4
% plot(gpaBeforeAndAfterLeave{k}(:,1), gpaBeforeAndAfterLeave{k}(:, 2), '.', 'markersize', 10);
% end
%
%
% figure, hold on;
% for k = 1:4
% x = gpaBeforeAndAfterLeave{k}(:, 1);
% y = gpaBeforeAndAfterLeave{k}(:, 2);
% %figure; plot(x,y , '.', 'markersize', 10);
%
% [r,p] = corrcoef(x,y);
% figure(k); plot(x,y,'.', 'Marker', '.', 'color', 'r', 'markersize', 20, 'linewidth',3);
% yticklabels({'F','Do','D+','Co','C+','Bo','B+', 'Ao', 'A'})
% yticks([0 1:0.5:4.5]);
% xticklabels({'F','Do','D+','Co','C+','Bo','B+', 'Ao', 'A'})
% xticks([0 1:0.5:4.5]);
% %axis([0.3 1.4 1.6 8.6])
% hold on
% a = polyfit(x,y,1); %fit polynomial using MSE (find a and b of y=ax+b)
% yhat=a(1)*x+a(2); %regression line
% plot(x,yhat, 'linewidth',3)
% %txt = mat2cell(good_ind,1,ones(1,size(good_ind,2)));
% %text(x-0.02,y+0.3, txt, 'color', 'black', 'fontsize',10);
% ylabel('GPA after the leave');
% xlabel('GPA before the leave');
% title(['Took a leave after semester ', int2str(k), ', $R$ =', num2str(r(1,2)),' with $p$ = ', num2str(p(1,2)), ' Slope = ', num2str(a(1))],'Interpreter','latex');
% grid on;
%
% end
% visualize histogram for N students
% N = 10;
% for k = 1:N
% figure, bar(stRecords{k}.gradeshist);
% title(['Student: ', stRecords{k}.id])
% xticks([1:9]);
% xticklabels({'A+','Ao','B+','Bo','C+','Co','D+', 'Do', 'F'})
% end