forked from Pdbz199/Koopman-RL-Old
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandomRL.py
64 lines (50 loc) · 1.38 KB
/
randomRL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#%%
import gym
import numpy as np
#%%
env = gym.make('CartPole-v0')
#%%
episodes = 200
steps_per_episode = 100
states = []
states_0 = []
states_1 = []
next_states_0 = []
next_states_1 = []
actions = []
rewards = []
#%%
for episode in range(episodes):
observation = env.reset()
for t in range(steps_per_episode):
# env.render()
states.append(observation)
action = env.action_space.sample()
if action == 0:
states_0.append(observation)
else:
states_1.append(observation)
actions.append(action)
observation, reward, done, _ = env.step(action) # take a random action
if action == 0:
next_states_0.append(observation)
else:
next_states_1.append(observation)
rewards.append(reward)
env.close()
states = np.array(states)
states_0 = np.array(states_0)
states_1 = np.array(states_1)
actions = np.array(actions)
rewards = np.array(rewards)
np.save('random-agent/cartpole-states', states)
np.save('random-agent/cartpole-states-0', states_0)
np.save('random-agent/cartpole-states-1', states_1)
np.save('random-agent/cartpole-next-states-0', next_states_0)
np.save('random-agent/cartpole-next-states-1', next_states_1)
np.save('random-agent/cartpole-actions', actions)
np.save('random-agent/cartpole-rewards', rewards)
#%%
print(rewards.shape)
print(np.mean(rewards))
# %%