-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathransac.py
51 lines (49 loc) · 1.97 KB
/
ransac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import cv2 as cv
import os
from get_in4 import *
import _pickle as cPickle
from matplotlib import pyplot as plt
MIN_MATCH_COUNT = 10
path_des = 'static/data_img/des/'
path_kp = 'static/data_img/keypoint/'
def ransac(img1, des1, kp1, path2):
list_des = os.listdir(path_des)
list_kp = os.listdir(path_kp)
#img1 = cv.imread(path1,0) # queryImage
img2 = cv.imread(path2,0) # trainImage
# Initiate SIFT detector
sift = cv.SIFT_create()
# find the keypoints and descriptors with SIFT
#kp1, des1 = sift.detectAndCompute(img1,None)
index2 = get_position_image(path2)
des2 = np.load(path_des+list_des[index2])
kp2, des2 = sift.detectAndCompute(img2,None)
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
# store all the good matches as per Lowe's ratio test.
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv.findHomography(src_pts,
dst_pts,
cv.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w = img1.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv.perspectiveTransform(pts,M)
img2 = cv.polylines(img2,[np.int32(dst)],True,255,3, cv.LINE_AA)
else:
return 0
draw_params = dict(matchColor = (0,255,0), # draw matches in green color
singlePointColor = None,
matchesMask = matchesMask, # draw only inliers
flags = 2)
return(sum(matchesMask))