From 0b2248a3758a54fc5d056d0e6de2eb168877c5cf Mon Sep 17 00:00:00 2001 From: Eric Charles Date: Tue, 28 May 2024 16:23:24 -0700 Subject: [PATCH 1/4] updated README.md and docs/tutorials.rst --- README.md | 19 +++++++++++++++---- docs/tutorials.rst | 4 ++++ 2 files changed, 19 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 87dcc8af..fb152e93 100644 --- a/README.md +++ b/README.md @@ -7,18 +7,29 @@ Quantile parametrization for probability distribution functions. ![Read the Docs](https://img.shields.io/readthedocs/qp) ## Motivation -This repository exists for two reasons. -1. To be the home of `qp`, a python package for handling probability distributions using various parametrizations, including a set of quantiles; -2. To help us learn best practices in software carpentry. +In a scientific inference we typically seek to characterize the posterior probability density function (PDF) for our parameter(s), which means we need to fund a suitable, calculable approximation to it. Popular choices include an ensemble of samples, a histogram estimator based on those samples, or (in 1 dimensional problems) a tabulation of the PDF on a regular parameter grid. qp is a python package that supports these approximations, as well as the “quantile parameterization” from which the package gets its name. + +The [scipy.stats](https://docs.scipy.org/doc/scipy/reference/stats.html) package provides an interface to many probability distributions for parameterized analytic forms (e.g., Gaussians, LogNormal Distributions, etc...) `qp` extends that functionality to numerically-evaluated forms, such as the histograms and interpolated grids mentioned above. + + ## Examples +Here are some example notebooks to help new users explore `qp` functionality. + * **[Basic Demo](http://htmlpreview.github.io/?https://github.com/LSSTDESC/qp/blob/master/docs/demo.html)** [(raw notebook)](https://github.com/LSSTDESC/qp/blob/master/nb/demo.ipynb) * **[Practical Example](http://htmlpreview.github.io/?https://github.com/LSSTDESC/qp/blob/master/docs/practical_example.html)** [(raw notebook)](https://github.com/LSSTDESC/qp/blob/master/nb/practical_example.ipynb) -Also: [Read the Docs](http://qp.readthedocs.io/) +* **[Using Metrics](http://htmlpreview.github.io/?https://github.com/LSSTDESC/qp/blob/master/docs/metrics_examples.html)** [(raw notebook)](https://github.com/LSSTDESC/qp/blob/master/nb/metrics_examples.ipynb) + +* **[Using iterarors](http://htmlpreview.github.io/?https://github.com/LSSTDESC/qp/blob/master/docs/iterator_demo.html)** [(raw notebook)](https://github.com/LSSTDESC/qp/blob/master/nb/iterator_demo.ipynb) + +* **[Quantile parameterization](http://htmlpreview.github.io/?https://github.com/LSSTDESC/qp/blob/master/docs/quantile_parameterization_demo.html)** [(raw notebook)](https://github.com/LSSTDESC/qp/blob/master/nb/quantile_parameterization_demo.ipynb) + + +Also the read the docs page has significantly more information: [Read the Docs](http://qp.readthedocs.io/) ## People diff --git a/docs/tutorials.rst b/docs/tutorials.rst index 7ff08191..7bab6e00 100644 --- a/docs/tutorials.rst +++ b/docs/tutorials.rst @@ -7,3 +7,7 @@ See the following IPython Notebooks for some examples of using `qp`: * `Basic Demo `_ * `Practical Example `_ +* `Using Metrics `_ +* `Using iterarors `_ +* `Quantile parameterization] `_ + From 3eb6239d95f2bf1491707bc36308cdb0cd8bc9d5 Mon Sep 17 00:00:00 2001 From: Eric Charles Date: Tue, 28 May 2024 16:26:33 -0700 Subject: [PATCH 2/4] added example notebooks --- docs/iterator_demo.html | 7631 ++++++++++++++++++ docs/metrics_examples.html | 8038 +++++++++++++++++++ docs/quantile_parameterization_demo.html | 8995 ++++++++++++++++++++++ 3 files changed, 24664 insertions(+) create mode 100644 docs/iterator_demo.html create mode 100644 docs/metrics_examples.html create mode 100644 docs/quantile_parameterization_demo.html diff --git a/docs/iterator_demo.html b/docs/iterator_demo.html new file mode 100644 index 00000000..6d3e7fab --- /dev/null +++ b/docs/iterator_demo.html @@ -0,0 +1,7631 @@ + + + + + +iterator_demo + + + + + + + + + + + + +
+
+ + diff --git a/docs/metrics_examples.html b/docs/metrics_examples.html new file mode 100644 index 00000000..f80e897d --- /dev/null +++ b/docs/metrics_examples.html @@ -0,0 +1,8038 @@ + + + + + +metrics_examples + + + + + + + + + + + + +
+ + + + + + + + + +
+ + diff --git a/docs/quantile_parameterization_demo.html b/docs/quantile_parameterization_demo.html new file mode 100644 index 00000000..516e18fc --- /dev/null +++ b/docs/quantile_parameterization_demo.html @@ -0,0 +1,8995 @@ + + + + + +quantile_parameterization_demo + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
+ + From 68a09fb0fc19628b19a233be5cd391db1a90c562 Mon Sep 17 00:00:00 2001 From: sschmidt23 Date: Wed, 29 May 2024 12:53:01 -0700 Subject: [PATCH 3/4] typo swap master -> main in tutorials paths --- README.md | 2 +- docs/tutorials.rst | 10 +++++----- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index fb152e93..4b39d0c7 100644 --- a/README.md +++ b/README.md @@ -8,7 +8,7 @@ Quantile parametrization for probability distribution functions. ## Motivation -In a scientific inference we typically seek to characterize the posterior probability density function (PDF) for our parameter(s), which means we need to fund a suitable, calculable approximation to it. Popular choices include an ensemble of samples, a histogram estimator based on those samples, or (in 1 dimensional problems) a tabulation of the PDF on a regular parameter grid. qp is a python package that supports these approximations, as well as the “quantile parameterization” from which the package gets its name. +In a scientific inference we typically seek to characterize the posterior probability density function (PDF) for our parameter(s), which means we need to find a suitable, calculable approximation to it. Popular choices include an ensemble of samples, a histogram estimator based on those samples, or (in 1 dimensional problems) a tabulation of the PDF on a regular parameter grid. qp is a python package that supports these approximations, as well as the “quantile parameterization” from which the package gets its name. The [scipy.stats](https://docs.scipy.org/doc/scipy/reference/stats.html) package provides an interface to many probability distributions for parameterized analytic forms (e.g., Gaussians, LogNormal Distributions, etc...) `qp` extends that functionality to numerically-evaluated forms, such as the histograms and interpolated grids mentioned above. diff --git a/docs/tutorials.rst b/docs/tutorials.rst index 7bab6e00..91ccaab0 100644 --- a/docs/tutorials.rst +++ b/docs/tutorials.rst @@ -5,9 +5,9 @@ Tutorials See the following IPython Notebooks for some examples of using `qp`: -* `Basic Demo `_ -* `Practical Example `_ -* `Using Metrics `_ -* `Using iterarors `_ -* `Quantile parameterization] `_ +* `Basic Demo `_ +* `Practical Example `_ +* `Using Metrics `_ +* `Using iterarors `_ +* `Quantile parameterization] `_ From 2bb8de2d8f572087ba25544b5a97669fcae46257 Mon Sep 17 00:00:00 2001 From: sschmidt23 Date: Wed, 29 May 2024 12:56:18 -0700 Subject: [PATCH 4/4] missing l in html --- docs/tutorials.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/tutorials.rst b/docs/tutorials.rst index 91ccaab0..5c7d6b32 100644 --- a/docs/tutorials.rst +++ b/docs/tutorials.rst @@ -7,7 +7,7 @@ See the following IPython Notebooks for some examples of using `qp`: * `Basic Demo `_ * `Practical Example `_ -* `Using Metrics `_ +* `Using Metrics `_ * `Using iterarors `_ * `Quantile parameterization] `_