-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathGesture.py
110 lines (80 loc) · 3.52 KB
/
Gesture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Import statements
import numpy as np
import cv2
import math
capture = cv2.VideoCapture(0)
while capture.isOpened():
ret, frame = capture.read()
cv2.rectangle(frame, (100, 100), (300, 300), (0, 255, 0), 0)
crop_image = frame[100:300, 100:300]
# Apply Gaussian blur
blur = cv2.GaussianBlur(crop_image, (3, 3), 0)
# Change color-space from BGR -> HSV
hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
# define range of skin color in HSV
lower_skin = np.array([0,20,70], dtype=np.uint8)
upper_skin = np.array([20,255,255], dtype=np.uint8)
# Create a binary image with where white will be skin colors and rest is black
mask2 = cv2.inRange(hsv, lower_skin, upper_skin)
# Kernel for morphological transformation
kernel = np.ones((5, 5))
# Apply morphological transformations to filter out the background noise
dilation = cv2.dilate(mask2, kernel, iterations=1)
erosion = cv2.erode(dilation, kernel, iterations=1)
# Apply Gaussian Blur and Threshold
filtered = cv2.GaussianBlur(erosion, (3, 3), 0)
ret, thresh = cv2.threshold(filtered, 127, 255, 0)
# Show threshold image
cv2.imshow("Thresholded", thresh)
# Find contours
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
try:
# Find contour with maximum area
contour = max(contours, key=lambda x: cv2.contourArea(x))
# Create bounding rectangle around the contour
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(crop_image, (x, y), (x + w, y + h), (0, 0, 255), 0)
# Find convex hull
hull = cv2.convexHull(contour)
# Draw contour
drawing = np.zeros(crop_image.shape, np.uint8)
cv2.drawContours(drawing, [contour], -1, (0, 255, 0), 0)
cv2.drawContours(drawing, [hull], -1, (0, 0, 255), 0)
# Find convexity defects
hull = cv2.convexHull(contour, returnPoints=False)
defects = cv2.convexityDefects(contour, hull)
# Use cosine rule to find angle of the far point from the start and end point i.e. the convex points (the finger
# tips) for all defects
count_defects = 0
for i in range(defects.shape[0]):
s, e, f, d = defects[i, 0]
start = tuple(contour[s][0])
end = tuple(contour[e][0])
far = tuple(contour[f][0])
a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
angle = (math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) * 180) / 3.14
# if angle > 90 draw a circle at the far point
if angle <= 90:
count_defects += 1
cv2.circle(crop_image, far, 1, [0, 0, 255], -1)
cv2.line(crop_image, start, end, [0, 255, 0], 2)
# Print number of fingers
if count_defects < 2:
cv2.putText(frame, "CROUCH", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2)
elif count_defects >= 2:
cv2.putText(frame, "JUMP", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2)
else:
pass
except:
pass
# Show required images
cv2.imshow("Gesture", frame)
all_image = np.hstack((drawing, crop_image))
cv2.imshow('Contours', all_image)
# Close the camera if 'q' is pressed
if cv2.waitKey(1) == ord('q'):
break
capture.release()
cv2.destroyAllWindows()