forked from cvat-ai/cvat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
36 lines (29 loc) · 1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import base64
import io
import json
import numpy as np
from model_handler import ModelHandler
from PIL import Image
def init_context(context):
context.logger.info("Init context... 0%")
model = ModelHandler()
context.user_data.model = model
context.logger.info("Init context...100%")
def handler(context, event):
context.logger.info("Run TransT model")
data = event.body
buf = io.BytesIO(base64.b64decode(data["image"]))
shapes = data.get("shapes")
states = data.get("states")
image = Image.open(buf).convert('RGB')
image = np.array(image)[:, :, ::-1].copy()
results = {
'shapes': [],
'states': []
}
for i, shape in enumerate(shapes):
shape, state = context.user_data.model.infer(image, shape, states[i] if i < len(states) else None)
results['shapes'].append(shape)
results['states'].append(state)
return context.Response(body=json.dumps(results), headers={},
content_type='application/json', status_code=200)