-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmodel.py
493 lines (413 loc) · 17.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import math
from collections import OrderedDict
from typing import Optional
from torch import Tensor
import torch
import torch.nn as nn
import torch.nn.functional as F
from speechbrain.lobes.models.transformer.Transformer import PositionalEncoding
from cached_convnet import CachedConvNet
def mod_pad(x, chunk_size, pad):
# Mod pad the input to perform integer number of
# inferences
mod = 0
if (x.shape[-1] % chunk_size) != 0:
mod = chunk_size - (x.shape[-1] % chunk_size)
x = F.pad(x, (0, mod))
x = F.pad(x, pad)
return x, mod
class LayerNormPermuted(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super(LayerNormPermuted, self).__init__(*args, **kwargs)
def forward(self, x):
"""
Args:
x: [B, C, T]
"""
x = x.permute(0, 2, 1) # [B, T, C]
x = super().forward(x)
x = x.permute(0, 2, 1) # [B, C, T]
return x
class DepthwiseSeparableConv(nn.Module):
"""
Depthwise separable convolutions
"""
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation):
super(DepthwiseSeparableConv, self).__init__()
self.layers = nn.Sequential(
nn.Conv1d(in_channels, in_channels, kernel_size, stride,
padding, groups=in_channels, dilation=dilation),
LayerNormPermuted(in_channels),
nn.ReLU(),
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=1,
padding=0),
LayerNormPermuted(out_channels),
nn.ReLU(),
)
def forward(self, x):
return self.layers(x)
class DilatedCausalConvEncoder(nn.Module):
"""
A dilated causal convolution based encoder for encoding
time domain audio input into latent space.
"""
def __init__(self, channels, num_layers, kernel_size=3):
super(DilatedCausalConvEncoder, self).__init__()
self.channels = channels
self.num_layers = num_layers
self.kernel_size = kernel_size
# Compute buffer lengths for each layer
# buf_length[i] = (kernel_size - 1) * dilation[i]
self.buf_lengths = [(kernel_size - 1) * 2**i
for i in range(num_layers)]
# Compute buffer start indices for each layer
self.buf_indices = [0]
for i in range(num_layers - 1):
self.buf_indices.append(
self.buf_indices[-1] + self.buf_lengths[i])
# Dilated causal conv layers aggregate previous context to obtain
# contexful encoded input.
_dcc_layers = OrderedDict()
for i in range(num_layers):
dcc_layer = DepthwiseSeparableConv(
channels, channels, kernel_size=3, stride=1,
padding=0, dilation=2**i)
_dcc_layers.update({'dcc_%d' % i: dcc_layer})
self.dcc_layers = nn.Sequential(_dcc_layers)
def init_ctx_buf(self, batch_size, device):
"""
Returns an initialized context buffer for a given batch size.
"""
return torch.zeros(
(batch_size, self.channels,
(self.kernel_size - 1) * (2**self.num_layers - 1)),
device=device)
def forward(self, x, ctx_buf):
"""
Encodes input audio `x` into latent space, and aggregates
contextual information in `ctx_buf`. Also generates new context
buffer with updated context.
Args:
x: [B, in_channels, T]
Input multi-channel audio.
ctx_buf: {[B, channels, self.buf_length[0]], ...}
A list of tensors holding context for each dilation
causal conv layer. (len(ctx_buf) == self.num_layers)
Returns:
ctx_buf: {[B, channels, self.buf_length[0]], ...}
Updated context buffer with output as the
last element.
"""
T = x.shape[-1] # Sequence length
for i in range(self.num_layers):
buf_start_idx = self.buf_indices[i]
buf_end_idx = self.buf_indices[i] + self.buf_lengths[i]
# DCC input: concatenation of current output and context
dcc_in = torch.cat(
(ctx_buf[..., buf_start_idx:buf_end_idx], x), dim=-1)
# Push current output to the context buffer
ctx_buf[..., buf_start_idx:buf_end_idx] = \
dcc_in[..., -self.buf_lengths[i]:]
# Residual connection
x = x + self.dcc_layers[i](dcc_in)
return x, ctx_buf
class CausalTransformerDecoderLayer(torch.nn.TransformerDecoderLayer):
"""
Adapted from:
"https://github.com/alexmt-scale/causal-transformer-decoder/blob/"
"0caf6ad71c46488f76d89845b0123d2550ef792f/"
"causal_transformer_decoder/model.py#L77"
"""
def forward(
self,
tgt: Tensor,
memory: Optional[Tensor] = None,
chunk_size: int = 1
) -> Tensor:
tgt_last_tok = tgt[:, -chunk_size:, :]
# self attention part
tmp_tgt, sa_map = self.self_attn(
tgt_last_tok,
tgt,
tgt,
attn_mask=None, # not needed because we only care about the last token
key_padding_mask=None,
)
tgt_last_tok = tgt_last_tok + self.dropout1(tmp_tgt)
tgt_last_tok = self.norm1(tgt_last_tok)
# encoder-decoder attention
if memory is not None:
tmp_tgt, ca_map = self.multihead_attn(
tgt_last_tok,
memory,
memory,
attn_mask=None, # Attend to the entire chunk
key_padding_mask=None,
)
tgt_last_tok = tgt_last_tok + self.dropout2(tmp_tgt)
tgt_last_tok = self.norm2(tgt_last_tok)
# final feed-forward network
tmp_tgt = self.linear2(
self.dropout(self.activation(self.linear1(tgt_last_tok)))
)
tgt_last_tok = tgt_last_tok + self.dropout3(tmp_tgt)
tgt_last_tok = self.norm3(tgt_last_tok)
return tgt_last_tok, sa_map, ca_map
class CausalTransformerDecoder(nn.Module):
"""
A casual transformer decoder which decodes input vectors using
precisely `ctx_len` past vectors in the sequence, and using no future
vectors at all.
"""
def __init__(self, model_dim, ctx_len, chunk_size, num_layers,
nhead, use_pos_enc, ff_dim, dropout):
super(CausalTransformerDecoder, self).__init__()
self.num_layers = num_layers
self.model_dim = model_dim
self.ctx_len = ctx_len
self.chunk_size = chunk_size
self.nhead = nhead
self.use_pos_enc = use_pos_enc
self.unfold = nn.Unfold(kernel_size=(
ctx_len + chunk_size, 1), stride=chunk_size)
self.pos_enc = PositionalEncoding(model_dim, max_len=200)
self.tf_dec_layers = nn.ModuleList([CausalTransformerDecoderLayer(
d_model=model_dim, nhead=nhead, dim_feedforward=ff_dim,
batch_first=True, dropout=dropout) for _ in range(num_layers)])
def init_ctx_buf(self, batch_size, device):
return torch.zeros(
(batch_size, self.num_layers + 1, self.ctx_len, self.model_dim),
device=device)
def _causal_unfold(self, x):
"""
Unfolds the sequence into a batch of sequences
prepended with `ctx_len` previous values.
Args:
x: [B, ctx_len + L, C]
ctx_len: int
Returns:
[B * L, ctx_len + 1, C]
"""
B, T, C = x.shape
x = x.permute(0, 2, 1) # [B, C, ctx_len + L]
x = self.unfold(x.unsqueeze(-1)) # [B, C * (ctx_len + chunk_size), -1]
x = x.permute(0, 2, 1)
x = x.reshape(B, -1, C, self.ctx_len + self.chunk_size)
x = x.reshape(-1, C, self.ctx_len + self.chunk_size)
x = x.permute(0, 2, 1)
return x
def forward(self, tgt, mem, ctx_buf, probe=False):
"""
Args:
x: [B, model_dim, T]
ctx_buf: [B, num_layers, model_dim, ctx_len]
"""
mem, _ = mod_pad(mem, self.chunk_size, (0, 0))
tgt, mod = mod_pad(tgt, self.chunk_size, (0, 0))
# Input sequence length
B, C, T = tgt.shape
tgt = tgt.permute(0, 2, 1)
mem = mem.permute(0, 2, 1)
# Prepend mem with the context
mem = torch.cat((ctx_buf[:, 0, :, :], mem), dim=1)
ctx_buf[:, 0, :, :] = mem[:, -self.ctx_len:, :]
mem_ctx = self._causal_unfold(mem)
if self.use_pos_enc:
mem_ctx = mem_ctx + self.pos_enc(mem_ctx)
# Attention chunk size: required to ensure the model
# wouldn't trigger an out-of-memory error when working
# on long sequences.
K = 1000
for i, tf_dec_layer in enumerate(self.tf_dec_layers):
# Update the tgt with context
tgt = torch.cat((ctx_buf[:, i + 1, :, :], tgt), dim=1)
ctx_buf[:, i + 1, :, :] = tgt[:, -self.ctx_len:, :]
# Compute encoded output
tgt_ctx = self._causal_unfold(tgt)
if self.use_pos_enc and i == 0:
tgt_ctx = tgt_ctx + self.pos_enc(tgt_ctx)
tgt = torch.zeros_like(tgt_ctx)[:, -self.chunk_size:, :]
for i in range(int(math.ceil(tgt.shape[0] / K))):
tgt[i*K:(i+1)*K], _sa_map, _ca_map = tf_dec_layer(
tgt_ctx[i*K:(i+1)*K], mem_ctx[i*K:(i+1)*K],
self.chunk_size)
tgt = tgt.reshape(B, T, C)
tgt = tgt.permute(0, 2, 1)
if mod != 0:
tgt = tgt[..., :-mod]
return tgt, ctx_buf
class MaskNet(nn.Module):
def __init__(self, enc_dim, num_enc_layers, dec_dim, dec_buf_len,
dec_chunk_size, num_dec_layers, use_pos_enc, skip_connection, proj, decoder_dropout):
super(MaskNet, self).__init__()
self.skip_connection = skip_connection
self.proj = proj
# Encoder based on dilated causal convolutions.
self.encoder = DilatedCausalConvEncoder(channels=enc_dim,
num_layers=num_enc_layers)
# Project between encoder and decoder dimensions
self.proj_e2d_e = nn.Sequential(
nn.Conv1d(enc_dim, dec_dim, kernel_size=1, stride=1, padding=0,
groups=dec_dim),
nn.ReLU())
self.proj_e2d_l = nn.Sequential(
nn.Conv1d(enc_dim, dec_dim, kernel_size=1, stride=1, padding=0,
groups=dec_dim),
nn.ReLU())
self.proj_d2e = nn.Sequential(
nn.Conv1d(dec_dim, enc_dim, kernel_size=1, stride=1, padding=0,
groups=dec_dim),
nn.ReLU())
# Transformer decoder that operates on chunks of size
# buffer size.
self.decoder = CausalTransformerDecoder(
model_dim=dec_dim, ctx_len=dec_buf_len, chunk_size=dec_chunk_size,
num_layers=num_dec_layers, nhead=8, use_pos_enc=use_pos_enc,
ff_dim=2 * dec_dim, dropout=decoder_dropout)
def forward(self, x, l, enc_buf, dec_buf):
"""
Generates a mask based on encoded input `e` and the one-hot
label `label`.
Args:
x: [B, C, T]
Input audio sequence
l: [B, C]
Label embedding
ctx_buf: {[B, C, <receptive field of the layer>], ...}
List of context buffers maintained by DCC encoder
"""
# Enocder the label integrated input
e, enc_buf = self.encoder(x, enc_buf)
# Label integration
l = l.unsqueeze(2) * e
# Project to `dec_dim` dimensions
if self.proj:
e = self.proj_e2d_e(e)
m = self.proj_e2d_l(l)
# Cross-attention to predict the mask
m, dec_buf = self.decoder(m, e, dec_buf)
else:
# Cross-attention to predict the mask
m, dec_buf = self.decoder(l, e, dec_buf)
# Project mask to encoder dimensions
if self.proj:
m = self.proj_d2e(m)
# Final mask after residual connection
if self.skip_connection:
m = l + m
return m, enc_buf, dec_buf
class Net(nn.Module):
def __init__(self, label_len, L=8,
enc_dim=512, num_enc_layers=10,
dec_dim=256, dec_buf_len=100, num_dec_layers=2,
dec_chunk_size=72, out_buf_len=2,
use_pos_enc=True, skip_connection=True, proj=True, lookahead=True, decoder_dropout=0.0, convnet_config=None):
super(Net, self).__init__()
self.L = L
self.dec_chunk_size = dec_chunk_size
self.out_buf_len = out_buf_len
self.enc_dim = enc_dim
self.lookahead = lookahead
self.convnet_config = convnet_config
if convnet_config['convnet_prenet']:
self.convnet_pre = CachedConvNet(
1, convnet_config['kernel_sizes'], convnet_config['dilations'],
convnet_config['dropout'], convnet_config['combine_residuals'],
convnet_config['use_residual_blocks'], convnet_config['out_channels'],
use_2d=False)
# Input conv to convert input audio to a latent representation
kernel_size = 3 * L if lookahead else L
self.in_conv = nn.Sequential(
nn.Conv1d(in_channels=1,
out_channels=enc_dim, kernel_size=kernel_size, stride=L,
padding=0, bias=False),
nn.ReLU())
# Label embedding layer
label_len = 1
self.label_embedding = nn.Sequential(
nn.Linear(label_len, 512),
nn.LayerNorm(512),
nn.ReLU(),
nn.Linear(512, enc_dim),
nn.LayerNorm(enc_dim),
nn.ReLU())
# Mask generator
self.mask_gen = MaskNet(
enc_dim=enc_dim, num_enc_layers=num_enc_layers,
dec_dim=dec_dim, dec_buf_len=dec_buf_len,
dec_chunk_size=dec_chunk_size, num_dec_layers=num_dec_layers,
use_pos_enc=use_pos_enc, skip_connection=skip_connection, proj=proj, decoder_dropout=decoder_dropout)
# Output conv layer
self.out_conv = nn.Sequential(
nn.ConvTranspose1d(
in_channels=enc_dim, out_channels=1,
kernel_size=(out_buf_len + 1) * L,
stride=L,
padding=out_buf_len * L, bias=False),
nn.Tanh())
def init_buffers(self, batch_size, device):
enc_buf = self.mask_gen.encoder.init_ctx_buf(batch_size, device)
dec_buf = self.mask_gen.decoder.init_ctx_buf(batch_size, device)
out_buf = torch.zeros(batch_size, self.enc_dim, self.out_buf_len,
device=device)
return enc_buf, dec_buf, out_buf
def forward(self, x, init_enc_buf=None, init_dec_buf=None,
init_out_buf=None, convnet_pre_ctx=None, pad=True):
"""
Extracts the audio corresponding to the `label` in the given
`mixture`. Generates `chunk_size` samples per iteration.
Args:
mixed: [B, n_mics, T]
input audio mixture
label: [B, num_labels]
one hot label
Returns:
out: [B, n_spk, T]
extracted audio with sounds corresponding to the `label`
"""
label = torch.zeros(x.shape[0], 1, device=x.device)
mod = 0
if pad:
pad_size = (self.L, self.L) if self.lookahead else (0, 0)
x, mod = mod_pad(x, chunk_size=self.L, pad=pad_size)
if hasattr(self, 'convnet_pre'):
if convnet_pre_ctx is None:
convnet_pre_ctx = self.convnet_pre.init_ctx_buf(
x.shape[0], x.device)
convnet_out, convnet_pre_ctx = self.convnet_pre(x, convnet_pre_ctx)
if self.convnet_config['skip_connection'] == 'add':
x = x + convnet_out
elif self.convnet_config['skip_connection'] == 'multiply':
x = x * convnet_out
else:
x = convnet_out
if init_enc_buf is None or init_dec_buf is None or init_out_buf is None:
assert init_enc_buf is None and \
init_dec_buf is None and \
init_out_buf is None, \
"Both buffers have to initialized, or " \
"both of them have to be None."
enc_buf, dec_buf, out_buf = self.init_buffers(
x.shape[0], x.device)
else:
enc_buf, dec_buf, out_buf, = \
init_enc_buf, init_dec_buf, init_out_buf
# Generate latent space representation of the input
x = self.in_conv(x)
# Generate label embedding
l = self.label_embedding(label) # [B, label_len] --> [B, channels]
# Generate mask corresponding to the label
m, enc_buf, dec_buf = self.mask_gen(x, l, enc_buf, dec_buf)
# Apply mask and decode
x = x * m
x = torch.cat((out_buf, x), dim=-1)
out_buf = x[..., -self.out_buf_len:]
x = self.out_conv(x)
# Remove mod padding, if present.
if mod != 0:
x = x[:, :, :-mod]
if init_enc_buf is None:
return x
else:
return x, enc_buf, dec_buf, out_buf, convnet_pre_ctx