-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathnbody.jl
135 lines (113 loc) · 3.92 KB
/
nbody.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# The Computer Language Benchmarks Game
# https://salsa.debian.org/benchmarksgame-team/benchmarksgame/
# based on the Java version
module NBody
using Printf
# Constants
const solar_mass = 4 * pi * pi
const days_per_year = 365.24
# A heavenly body in the system
mutable struct Body
x::Float64
y::Float64
z::Float64
vx::Float64
vy::Float64
vz::Float64
mass::Float64
end
function offset_momentum(b::Body, px, py, pz)
b.vx = -px / solar_mass
b.vy = -py / solar_mass
b.vz = -pz / solar_mass
end
function init_sun(bodies)
local px::Float64 = 0.0
local py::Float64 = 0.0
local pz::Float64 = 0.0
for b in bodies
px += b.vx * b.mass
py += b.vy * b.mass
pz += b.vz * b.mass
end
offset_momentum(bodies[1], px, py, pz)
end
function advance(bodies, dt)
for i = 1:length(bodies)
for j = i+1:length(bodies)
dx = bodies[i].x - bodies[j].x
dy = bodies[i].y - bodies[j].y
dz = bodies[i].z - bodies[j].z
dsq = dx^2 + dy^2 + dz^2
distance = sqrt(dsq)
mag = dt / (dsq * distance)
bodies[i].vx -= dx * bodies[j].mass * mag
bodies[i].vy -= dy * bodies[j].mass * mag
bodies[i].vz -= dz * bodies[j].mass * mag
bodies[j].vx += dx * bodies[i].mass * mag
bodies[j].vy += dy * bodies[i].mass * mag
bodies[j].vz += dz * bodies[i].mass * mag
end
end
for b in bodies
b.x += dt * b.vx
b.y += dt * b.vy
b.z += dt * b.vz
end
end
function energy(bodies)
local e::Float64 = 0.0
for i = 1:length(bodies)
e += 0.5 * bodies[i].mass *
(bodies[i].vx^2 + bodies[i].vy^2 + bodies[i].vz^2)
for j = i+1:length(bodies)
dx = bodies[i].x - bodies[j].x
dy = bodies[i].y - bodies[j].y
dz = bodies[i].z - bodies[j].z
distance = sqrt(dx^2 + dy^2 + dz^2)
e -= (bodies[i].mass * bodies[j].mass) / distance
end
end
e
end
function perf_nbody(N::Int=1000)
jupiter = Body( 4.84143144246472090e+00, # x
-1.16032004402742839e+00, # y
-1.03622044471123109e-01, # z
1.66007664274403694e-03 * days_per_year, # vx
7.69901118419740425e-03 * days_per_year, # vy
-6.90460016972063023e-05 * days_per_year, # vz
9.54791938424326609e-04 * solar_mass) # mass
saturn = Body( 8.34336671824457987e+00,
4.12479856412430479e+00,
-4.03523417114321381e-01,
-2.76742510726862411e-03 * days_per_year,
4.99852801234917238e-03 * days_per_year,
2.30417297573763929e-05 * days_per_year,
2.85885980666130812e-04 * solar_mass)
uranus = Body( 1.28943695621391310e+01,
-1.51111514016986312e+01,
-2.23307578892655734e-01,
2.96460137564761618e-03 * days_per_year,
2.37847173959480950e-03 * days_per_year,
-2.96589568540237556e-05 * days_per_year,
4.36624404335156298e-05 * solar_mass)
neptune = Body( 1.53796971148509165e+01,
-2.59193146099879641e+01,
1.79258772950371181e-01,
2.68067772490389322e-03 * days_per_year,
1.62824170038242295e-03 * days_per_year,
-9.51592254519715870e-05 * days_per_year,
5.15138902046611451e-05 * solar_mass)
sun = Body(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, solar_mass)
bodies = [sun, jupiter, saturn, uranus, neptune]
init_sun(bodies)
@printf("%.9f\n", energy(bodies))
for i = 1:N
advance(bodies, 0.01)
end
@printf("%.9f\n", energy(bodies))
end
end # module
n = parse(Int,ARGS[1])
NBody.perf_nbody(n)