diff --git a/src/TaylorModels.jl b/src/TaylorModels.jl index f0e50aa7..f26807b9 100644 --- a/src/TaylorModels.jl +++ b/src/TaylorModels.jl @@ -21,7 +21,8 @@ import Base: setindex!, getindex, copy, firstindex, lastindex, using TaylorSeries: derivative, ∇ import TaylorSeries: integrate, get_order, evaluate, pretty_print, - constant_term, linear_polynomial, fixorder, get_numvars + constant_term, linear_polynomial, nonlinear_polynomial, + fixorder, get_numvars import IntervalArithmetic: showfull diff --git a/src/auxiliary.jl b/src/auxiliary.jl index 2537f877..9f688e2c 100644 --- a/src/auxiliary.jl +++ b/src/auxiliary.jl @@ -7,13 +7,14 @@ for TM in (:TaylorModel1, :RTaylorModel1, :TaylorModelN) @inline firstindex(a::$TM) = 0 @inline lastindex(a::$TM) = get_order(a) - getindex(a::$TM, n::Integer) = a.pol[n] - getindex(a::$TM, u::UnitRange) = a.pol[u] - getindex(a::$TM, c::Colon) = a.pol[c] - # getindex(a::$TM, u::StepRange{Int,Int}) = a.pol[u[:]] + getindex(a::$TM, n::Integer) = getindex(polynomial(a), n) + getindex(a::$TM, u::UnitRange) = getindex(polynomial(a), u) + getindex(a::$TM, c::Colon) = getindex(polynomial(a), c) + # getindex(a::$TM, u::StepRange{Int,Int}) = getindex(polynomial(a), u) constant_term(a::$TM) = constant_term(polynomial(a)) linear_polynomial(a::$TM) = linear_polynomial(polynomial(a)) + nonlinear_polynomial(a::$TM) = nonlinear_polynomial(polynomial(a)) # norm norm(x::$TM, p::Real=2) = norm(polynomial(x), p) diff --git a/src/bounds.jl b/src/bounds.jl index 2d50b3d6..0ca2ee64 100644 --- a/src/bounds.jl +++ b/src/bounds.jl @@ -20,14 +20,14 @@ function bound_remainder(::Type{TaylorModel1}, f::Function, polf::Taylor1, polfI fTIend = polfI[_order] if (sup(fTIend) < 0 || inf(fTIend) > 0) # Absolute remainder is monotonic - a = interval(I.lo) - b = interval(I.hi) + a = Interval(inf(I)) + b = Interval(sup(I)) Δlo = f(a) - polf(a-x0) # Δlo = f(a) - bound_taylor1(polf, a-x0) Δhi = f(b) - polf(b-x0) # Δhi = f(b) - bound_taylor1(polf, b-x0) Δx0 = f(x0) - polf[0] - Δ = hull(hull(Δlo, Δx0), Δhi) + Δ = hull(Δlo, Δx0, Δhi) else # Lagrange bound Δ = fTIend * (I-x0)^_order @@ -41,16 +41,15 @@ function bound_remainder(::Type{TaylorModel1}, f::Function, polf::Taylor1{Taylor fTIend = polfI[_order] if (sup(fTIend) < 0 || inf(fTIend) > 0) # Absolute remainder is monotonic - a = interval(I.lo) - b = interval(I.hi) - N = get_numvars() - symIbox = IntervalBox(-1 .. 1, Val(N)) + a = Interval(inf(I)) + b = Interval(sup(I)) + symIbox = IntervalBox(-1 .. 1, get_numvars()) Δlo = (f(a) - polf(a-x0))(symIbox) # Δlo = f(a) - bound_taylor1(polf, a-x0) Δhi = (f(b) - polf(b-x0))(symIbox) # Δhi = f(b) - bound_taylor1(polf, b-x0) Δx0 = (f(x0) - polf[0])(symIbox) - Δ = hull(hull(Δlo, Δx0), Δhi) + Δ = hull(Δlo, Δx0, Δhi) else # Lagrange bound Δ = fTIend * (I-x0)^_order @@ -76,8 +75,8 @@ function bound_remainder(::Type{RTaylorModel1}, f::Function, polf::Taylor1, polf _order = get_order(polf) + 1 fTIend = polfI[_order+1] - a = interval(I.lo) - b = interval(I.hi) + a = Interval(inf(I)) + b = Interval(sup(I)) if (sup(fTIend) < 0 || inf(fTIend) > 0) && isempty(a ∩ x0) && isempty(b ∩ x0) # Error is monotonic denom_lo = (a-x0)^_order @@ -123,8 +122,8 @@ function bound_taylor1(fT::Taylor1, I::Interval) # Bound the range of fT using the roots and end points num_roots = length(rootsder) num_roots == 0 && return fT(I) - rangepoly = hull( fT(interval(I.lo)), fT(interval(I.hi)) ) - for ind in 1:num_roots + rangepoly = hull( fT(Interval(inf(I))), fT(Interval(sup(I))) ) + @inbounds for ind in 1:num_roots rangepoly = hull(rangepoly, fT(rootsder[ind].interval)) end @@ -142,20 +141,24 @@ a definite sign. """ function bound_taylor1(fT::Taylor1{T}, fTd::Taylor1{T}, I::Interval{T}) where {T} # + I_lo = inf(I) + I_hi = sup(I) if inf(fTd(I)) ≥ 0 - return Interval(fT(I.lo), fT(I.hi)) + return Interval(fT(I_lo), fT(I_hi)) elseif sup(fTd(I)) ≤ 0 - return Interval(fT(I.hi), fT(I.lo)) + return Interval(fT(I_hi), fT(I_lo)) end return fT(I) end function bound_taylor1(fT::Taylor1{Interval{T}}, fTd::Taylor1{Interval{T}}, I::Interval{S}) where {T,S} # + I_lo = inf(I) + I_hi = sup(I) if inf(fTd(I)) ≥ 0 - return hull(fT(I.lo), fT(I.hi)) + return hull(fT(I_lo), fT(I_hi)) elseif sup(fTd(I)) ≤ 0 - return hull(fT(I.hi), fT(I.lo)) + return hull(fT(I_hi), fT(I_lo)) end return fT(I) end @@ -180,42 +183,47 @@ The returned bound corresponds to the improved polynomial bound with the remaind of the `TaylorModel1` included. """ function linear_dominated_bounder(fT::TaylorModel1{T, S}; ϵ=1e-3, max_iter=5) where {T, S} - d = 1. - Dn = fT.dom - Dm = fT.x0 - Pm = Taylor1(copy(fT.pol.coeffs)) - bound = interval(0.) + d = one(T) + dom = domain(fT) + x0 = expansion_point(fT) + pol = polynomial(fT) + Pm = deepcopy(pol) + bound = zero_interval(S) + hi = sup(pol(dom - x0)) + n_iter = 0 while d > ϵ && n_iter < max_iter - x0 = mid(Dn - Dm) - c = mid(Dn) + x0 = mid(dom - x0) + c = mid(dom) update!(Pm, x0) - linear = Taylor1(Pm.coeffs[1:2], Pm.order) - non_linear = Pm - linear + non_linear = nonlinear_polynomial(Pm) + linear = Pm - non_linear if T <: Interval Li = mid(linear[1]) else Li = linear[1] end - I1 = linear(Dn - c) - Ih = non_linear(Dn - c) - bound = I1.lo + Ih + I1 = linear(dom - c) + Ih = non_linear(dom - c) + bound = inf(I1) + Ih d = diam(bound) n_iter += 1 + dom_lo = inf(dom) + dom_hi = sup(dom) if Li == 0 break elseif Li > 0 - new_hi = min(Dn.lo + (d / abs(Li)), Dn.hi) - Dm = Dn - Dn = interval(Dn.lo, new_hi) + new_hi = min(dom_lo + (d / abs(Li)), dom_hi) + x0 = dom + dom = Interval(dom_lo, new_hi) else - new_lo = max(Dn.hi - (d / abs(Li)), Dn.lo) - Dm = Dn - Dn = interval(new_lo, Dn.hi) + new_lo = max(dom_hi - (d / abs(Li)), dom_lo) + x0 = dom + dom = Interval(new_lo, dom_hi) end end - hi = fT.pol(fT.dom - fT.x0).hi - return interval(bound.lo, hi) + fT.rem + + return Interval(inf(bound), hi) + remainder(fT) end """ @@ -227,52 +235,57 @@ the bound of `fT` gets tighter than `ϵ` or the number of steps reachs `max_iter The returned bound corresponds to the improved polynomial bound with the remainder of the `TaylorModelN` included. """ -function linear_dominated_bounder(fT::TaylorModelN{N, T, S}; ϵ=1e-5, max_iter=5) where {N, T, S} - d = 1. - Dn = fT.dom - Dm = fT.x0 - Pm = TaylorN(deepcopy(fT.pol.coeffs)) - bound = interval(0.) +function linear_dominated_bounder(fT::TaylorModelN{N,T,S}; ϵ=1e-5, max_iter=5) where {N, T, S} + d = one(T) + dom = domain(fT) + x0 = expansion_point(fT) + pol = polynomial(fT) + Pm = deepcopy(pol) + bound = zero_interval(S) + pol_hi = sup(pol(dom - x0)) + n_iter = 0 - x0 = Array{S}(undef, N) + x00 = Array{S}(undef, N) + new_boxes = fill(bound, N) linear_coeffs = Array{Float64}(undef, N) while d > ϵ && n_iter < max_iter - x0 .= mid(Dn - Dm) - c = mid(Dn) - update!(Pm, x0) + x00 .= mid(dom - x0) + c = mid(dom) + update!(Pm, x00) linear_part = Pm[1] if T <: Interval - linear_coeffs .= mid.(linear_part.coeffs) + @. linear_coeffs = mid(linear_part.coeffs) else - linear_coeffs .= linear_part.coeffs + @. linear_coeffs = linear_part.coeffs end - linear = TaylorN(deepcopy(Pm.coeffs[1:2]), Pm.order) - non_linear = Pm - linear - centered_domain = Dn .- c + non_linear = nonlinear_polynomial(Pm) + linear = Pm - non_linear + centered_domain = dom .- c I1 = linear(centered_domain) Ih = non_linear(centered_domain) - bound = I1.lo + Ih + bound = inf(I1) + Ih d = diam(bound) n_iter += 1 - new_boxes = Interval[] - for (idx, box) in enumerate(Dn) + for (idx, box) in enumerate(dom) Li = linear_coeffs[idx] + box_lo = inf(box) + box_hi = sup(box) if Li == 0 - Dni = box + domi = box elseif Li < 0 - lo = max(box.hi - (d / abs(Li)), box.lo) - Dni = interval(lo, box.hi) + lo = max(box_hi - (d / abs(Li)), box_lo) + domi = Interval(lo, box_hi) else - hi = min(box.lo + (d / abs(Li)), box.hi) - Dni = interval(box.lo, hi) + hi = min(box_lo + (d / abs(Li)), box_hi) + domi = Interval(box_lo, hi) end - push!(new_boxes, Dni) + new_boxes[idx] = domi end - Dm = Dn - Dn = IntervalBox(new_boxes...) + x0 = dom + dom = IntervalBox(new_boxes...) end - hi = fT.pol(fT.dom - fT.x0).hi - return interval(bound.lo, hi) + fT.rem + + return Interval(inf(bound), pol_hi) + remainder(fT) end """ @@ -292,20 +305,21 @@ For this algorithm the linear part is bounded by solving a simple set of linear equations (compared to the iterative procedure by Makino & Berz). """ function quadratic_fast_bounder(fT::TaylorModel1) - P = fT.pol - bound_tm = fT(fT.dom - fT.x0) - if signbit(P[2]) - return bound_tm - else - x0 = -P[1] / (2 * P[2]) - x = Taylor1(fT.pol.order) - Qx0 = (x - x0) * P[2] * (x - x0) - bound_qfb = (P - Qx0)(fT.dom - fT.x0) - hi = P(fT.dom - fT.x0).hi - bound_qfb = interval(bound_qfb.lo, hi) + fT.rem - bound = bound_qfb ∩ bound_tm - return bound - end + P = polynomial(fT) + dom = domain(fT) + x00 = expansion_point(fT) + bound_tm = fT(dom - x00) + signbit(P[2]) && return bound_tm + + cent_dom = dom - x00 + x0 = -P[1] / (2 * P[2]) + x = Taylor1(P.order) + Qx0 = (x - x0) * P[2] * (x - x0) + bound_qfb = (P - Qx0)(cent_dom) + hi = sup(P(cent_dom)) + bound_qfb = Interval(inf(bound_qfb), hi) + remainder(fT) + + return bound_qfb ∩ bound_tm end """ @@ -325,20 +339,23 @@ For this algorithm the linear part is bounded by solving a simple set of linear equations (compared to the iterative procedure by Makino & Berz). """ function quadratic_fast_bounder(fT::TaylorModelN) - P = fT.pol + @assert get_numvars() == get_numvars(fT) + P = polynomial(fT) + dom = domain(fT) + x0 = expansion_point(fT) H = Matrix(TaylorSeries.hessian(P)) - bound_tm = fT(fT.dom - fT.x0) + bound_tm = fT(dom - x0) if isposdef(H) P1 = -P[1].coeffs xn = H \ P1 - x = set_variables("x", numvars=length(xn)) + x = get_variables()#set_variables("x", numvars=length(xn)) Qxn = 0.5 * (x - xn)' * H * (x - xn) - bound_qfb = (P - Qxn)(fT.dom - fT.x0) - hi = P(fT.dom - fT.x0).hi - bound_qfb = interval(bound_qfb.lo, hi) + fT.rem + bound_qfb = (P - Qxn)(dom - x0) + hi = sup(P(dom - x0)) + bound_qfb = interval(inf(bound_qfb), hi) + remainder(fT) bound = bound_qfb ∩ bound_tm return bound - else - return bound_tm end + + return bound_tm end diff --git a/test/TM1.jl b/test/TM1.jl index 81907452..67576baf 100644 --- a/test/TM1.jl +++ b/test/TM1.jl @@ -72,6 +72,7 @@ end @test expansion_point(tv) == x0 @test constant_term(tv) == interval(0.0) @test linear_polynomial(tv) == Taylor1(Interval{Float64},5) + @test nonlinear_polynomial(tv) == zero(Taylor1(Interval{Float64},5)) # Tests related to fixorder a = TaylorModel1(Taylor1([1.0, 1]), 0..1, 0..0, -1 .. 1) @@ -99,10 +100,14 @@ end b = a * tv @test b == TaylorModel1(a.pol*tv.pol, a.rem*tv.pol(ii1-x1), x1, ii1) @test remainder(b/tv) ⊆ Interval(-0.78125, 0.84375) + @test constant_term(b) == 1..1 + @test linear_polynomial(b) == 2*x1*Taylor1(5) + @test nonlinear_polynomial(b) == x1*Taylor1(5)^2 b = a * a.pol[0] @test b == a @test constant_term(a) == x1 @test linear_polynomial(a) == Taylor1(5) + @test nonlinear_polynomial(a) == Taylor1(0..0, 5) a = TaylorModel1(x0, 5, x0, ii0) @test a^0 == TaylorModel1(x0^0, 5, x0, ii0) @@ -579,6 +584,7 @@ end @test expansion_point(tv) == x0 @test constant_term(tv) == interval(0.0) @test linear_polynomial(tv) == Taylor1(Interval{Float64},5) + @test nonlinear_polynomial(tv) == zero(Taylor1(Interval{Float64},5)) # Tests related to fixorder a = RTaylorModel1(Taylor1([1.0, 1]), 0..1, 0..0, -1 .. 1) @@ -607,10 +613,13 @@ end b = a * tv @test b == RTaylorModel1(a.pol*tv.pol, a.rem*tv.pol(ii1-x1), x1, ii1) @test remainder(b/tv) ⊆ Interval(-2.75, 4.75) + @test linear_polynomial(b) == 2*x1*Taylor1(5) + @test nonlinear_polynomial(b) == x1*Taylor1(5)^2 b = a * a.pol[0] @test b == a @test constant_term(a) == x1 @test linear_polynomial(a) == Taylor1(5) + @test nonlinear_polynomial(a) == Taylor1(0..0, 5) a = RTaylorModel1(x0, 5, x0, ii0) @test a^0 == RTaylorModel1(x0^0, 5, x0, ii0) diff --git a/test/TMN.jl b/test/TMN.jl index a65e0322..adf9a464 100644 --- a/test/TMN.jl +++ b/test/TMN.jl @@ -72,6 +72,8 @@ set_variables(Interval{Float64}, [:x, :y], order=_order_max) @test linear_polynomial(xm) == xT @test linear_polynomial(ym) == yT @test linear_polynomial(xm^2) == zero(xT) + @test nonlinear_polynomial(xm) == zero(xT) + @test nonlinear_polynomial(xm^2) == xT^2 end @testset "Arithmetic operations" begin