forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsilog_loss.py
122 lines (99 loc) · 3.83 KB
/
silog_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Union
import torch
import torch.nn as nn
from torch import Tensor
from mmseg.registry import MODELS
from .utils import weight_reduce_loss
def silog_loss(pred: Tensor,
target: Tensor,
weight: Optional[Tensor] = None,
eps: float = 1e-4,
reduction: Union[str, None] = 'mean',
avg_factor: Optional[int] = None) -> Tensor:
"""Computes the Scale-Invariant Logarithmic (SI-Log) loss between
prediction and target.
Args:
pred (Tensor): Predicted output.
target (Tensor): Ground truth.
weight (Optional[Tensor]): Optional weight to apply on the loss.
eps (float): Epsilon value to avoid division and log(0).
reduction (Union[str, None]): Specifies the reduction to apply to the
output: 'mean', 'sum' or None.
avg_factor (Optional[int]): Optional average factor for the loss.
Returns:
Tensor: The calculated SI-Log loss.
"""
pred, target = pred.flatten(1), target.flatten(1)
valid_mask = (target > eps).detach().float()
diff_log = torch.log(target.clamp(min=eps)) - torch.log(
pred.clamp(min=eps))
valid_mask = (target > eps).detach() & (~torch.isnan(diff_log))
diff_log[~valid_mask] = 0.0
valid_mask = valid_mask.float()
diff_log_sq_mean = (diff_log.pow(2) * valid_mask).sum(
dim=1) / valid_mask.sum(dim=1).clamp(min=eps)
diff_log_mean = (diff_log * valid_mask).sum(dim=1) / valid_mask.sum(
dim=1).clamp(min=eps)
loss = torch.sqrt(diff_log_sq_mean - 0.5 * diff_log_mean.pow(2))
if weight is not None:
weight = weight.float()
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
@MODELS.register_module()
class SiLogLoss(nn.Module):
"""Compute SiLog loss.
Args:
reduction (str, optional): The method used
to reduce the loss. Options are "none",
"mean" and "sum". Defaults to 'mean'.
loss_weight (float, optional): Weight of loss. Defaults to 1.0.
eps (float): Avoid dividing by zero. Defaults to 1e-3.
loss_name (str, optional): Name of the loss item. If you want this
loss item to be included into the backward graph, `loss_` must
be the prefix of the name. Defaults to 'loss_silog'.
"""
def __init__(self,
reduction='mean',
loss_weight=1.0,
eps=1e-6,
loss_name='loss_silog'):
super().__init__()
self.reduction = reduction
self.loss_weight = loss_weight
self.eps = eps
self._loss_name = loss_name
def forward(
self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None,
):
assert pred.shape == target.shape, 'the shapes of pred ' \
f'({pred.shape}) and target ({target.shape}) are mismatch'
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
loss = self.loss_weight * silog_loss(
pred,
target,
weight,
eps=self.eps,
reduction=reduction,
avg_factor=avg_factor,
)
return loss
@property
def loss_name(self):
"""Loss Name.
This function must be implemented and will return the name of this
loss function. This name will be used to combine different loss items
by simple sum operation. In addition, if you want this loss item to be
included into the backward graph, `loss_` must be the prefix of the
name.
Returns:
str: The name of this loss item.
"""
return self._loss_name